Теория вероятности надежность схемы

Содержание:

В предыдущих статьях мы разобрали популярные учебные задачи по теории вероятностей: задачи про подбрасывания игральных кубиков и монеток, задачи про стрелков и станки.

В этой статье мы рассмотрим задачи вида
"задана схема электрической цепи с надежностью элементов (или вероятностями выхода из строя), найти вероятность работы цепи (или вероятность разрыва цепи)".

Задачи могут иметь чуть разные формулировки, но принцип решения для них одинаков, и его мы изучим, чтобы суметь решать такие задачи со схемами любой сложности.

Базовые события, обозначения и формулы

Самое первое, с чего мы начнем – формализация задачи (и решение любой своей задачи рекомендую начинать с этого). А именно, мы введем основные события:

$X$ = (Цепь работает) = (Цепь пропускает ток) и противоположное ему:
$overline$ =(Цепь не пропускает ток) = (Произошел разрыв в цепи).

$A_i$ = (Элемент i работает, пропускает ток) и $overline$ =(Элемент i отказал, не пропускает ток), $i=1,2. n$.

Обычно в условии задачи известны вероятности работы элементов (надежности): $p(A_i)=p_i$ или вероятности отказа $p(overline)=q_i=1-p_i$, $i=1,2. n$.

Также напомним основные формулы (из темы действий с событиями, формулы сложения и умножения вероятностей), которые пригодятся в решении этого типа задач.

Для независимых в совокупности событий (а отказы/работа элементов цепи – именно такие):

$$ P(A cdot B) = P(A) cdot P(B); quad(1) $$ $$ P(A+B) = P(A)+P(B)-P(A)cdot P(B); quad(2) $$ $$ P(A_1+A_2+. +A_n)=1-P(overline)cdot P(overline)cdot . cdot P(overline). quad(3) $$

Последовательно или параллельно?

Еще немного времени посвятим теории, вспомним о том, как могут соединяться элементы в цепи.

Последовательное соединение

Элементы цепи "нанизаны" на провод один за другим (следуют один за другим, отсюда и "последовательно"). Если откажет один любой – ток в цепи прервётся. Или, иначе говоря, цепь работает тогда и только тогда, когда ВСЕ элементы работают. В терминах теории вероятностей получаем произведение событий: $X=A_1 cdot A_2 cdot A_3$, а вероятность работы цепи равна

$$ P(X)=P(A_1 cdot A_2 cdot A_3)= P(A_1) cdot P(A_2) cdot P(A_3) =p_1 cdot p_2 cdot p_3. $$

Если в цепи последовательно соединены не три, а больше независимо работающих элементов, формула легко обобщается и получаем:

$$ P(X) = p_1 cdot p_2 cdot . cdot p_n; qquad P(overline)=1-p_1 cdot p_2 cdot . cdot p_n. quad(4) $$

Параллельное соединение

Тут тоже сама схема дает нам подсказку, когда мы видим, что элементы в схеме расположены как бы на параллельных проводах, речь идет о параллельном соединении.

В этом случае если откажет, скажем, элемент 1, ток может пройти через 2. Если откажут 1 и 2, ток пройдет через 3. И только если ВСЕ элементы откажут, цепь разорвется.

Еще говорят, цепь работает, если работает хотя бы один элемент в ней, в терминах теории вероятностей – это сумма событий: $X=A_1+A_2+A_3$.

Используем формулу (3) чтобы записать вероятность работы такой цепи:

$$ P(A_1+A_2+A_3)=1-P(overline)cdot P(overline) cdot P(overline)=1-q_1 cdot q_2 cdot q_3. $$

И обобщим на случай $n$ параллельных элементов в цепи:

$$ P(X) = 1-q_1 cdot q_2 cdot . cdot q_n; qquad P(overline)=q_1 cdot q_2 cdot . cdot q_n. quad(5) $$

Важно запомнить правило

Последовательному соединению соответствует произведение событий,
параллельному соединению – сумма событий.

Усложняем схему цепи

И все это была присказка к настоящему решению задач. Конечно, даже если у вас простая контрольная, схема с "тремя лампочками подряд" вряд ли попадется. Давайте посмотрим на типовые электрические схемы, для которых надо находить надежность в задачах:

Как для таких схем выписывать вероятности? Нам нужно научиться делать декомпозицию: выделять уровни схемы и определять тип соединения на каждом уровне.

Возьмем для примера левую верхнюю схему:

Работаем с первым уровнем схемы. Нужно мысленно выделить крупные части, которые между собой соединены одинаково (параллельно или последовательно). В данном случае видно три группы элементов, соединенных последовательно. Выделим для наглядности цветом:

То есть тип схемы на первом уровне – последовательный:

Как мы уже знаем, если соединение последовательное, нужно перемножать события, то есть

$$ X=X_1 cdot X_2 cdot X_3, $$

$X_1$ – работает первая группа элементов,
$X_2$ – работает вторая группа элементов,
$X_3$ – работает третья группа элементов.

Теперь смотрим на каждую группу. В первой группе всего один элемент, то есть она работает, когда работает первый элемент цепи ($X_1=A_1$). Мы дошли до элемента, разбор этой группы закончен.

А вот дальше интереснее. Рассмотрим поближе вторую группу:

В ней сразу выделим цветом подгруппы элементов. Видно, что вторая группа имеет уже параллельную структуру из розовых и фиолетовых элементов (они "висят" на параллельных линиях, это второй уровень вложенности схемы). А вот внутри розовые соединены последовательно (розовая группа работает – $A_4 cdot A_5$), фиолетовые элементы также между собой последовательно (фиолетовая группа работает – $A_2 cdot A_3$). Это уже третий уровень вложенности и он заканчивается отдельными элементами, значит, разбор окончен.

Так как розовая и фиолетовая группа соединены параллельно, речь идет о сумме этих событий, то есть вторая группа работает если:

$$X_2 = A_2 cdot A_3 + A_4 cdot A_5.$$

Абсолютно аналогично разбирается третья подгруппа (она совпадает по структуре со второй):

$$X_3 = A_6 cdot A_7 + A_8 cdot A_9.$$

Сводим все в одну формулу и выпишем искомое событие (Цепь работает исправно):

$$ X=X_1 cdot X_2 cdot X_3 = A_1 cdot left( A_2 cdot A_3 + A_4 cdot A_5
ight) cdot left( A_6 cdot A_7 + A_8 cdot A_9
ight). $$

Теперь переходим ко второму этапу решения задачи. Не забываем, что мы решаем задачу по теории вероятностей и надо определить вероятность того, что ток проходит в цепи. Будем использовать формулы (1)-(3).

Читайте также:  Hp indigo digital press

Так как вероятность произведения для независимых событий равна произведению вероятностей, получим:

$$ P(X)= P left( A_1 cdot left( A_2 cdot A_3 + A_4 cdot A_5
ight) cdot left( A_6 cdot A_7 + A_8 cdot A_9
ight)
ight) =\ = P (A_1) cdot P left ( A_2 cdot A_3 + A_4 cdot A_5
ight ) cdot P left( A_6 cdot A_7 + A_8 cdot A_9
ight) = $$

Для множителей с суммой событий внутри используем формулу (2):

$$ = P (A_1) cdot left[ P(A_2 cdot A_3) + P(A_4 cdot A_5) – P(A_2 cdot A_3 cdot A_4 cdot A_5)
ight] cdot left[ P(A_6 cdot A_7) + P(A_8 cdot A_9) – P(A_6 cdot A_7 cdot A_8 cdot A_9)
ight] = $$

И снова раскрываем вероятности произведений:

$$ = P (A_1) cdot left[ P(A_2) cdot P(A_3) + P(A_4) cdot P(A_5) – P(A_2) cdot P(A_3) cdot P(A_4) cdot P(A_5)
ight] cdot left[ P(A_6) cdot P(A_7) + P(A_8) cdot P(A_9) – P(A_6) cdot P(A_7) cdot P(A_8) cdot P(A_9)
ight]. $$

Перейдем к более компактной записи, положив $p_i=P(A_i)$:

$$ P(X)= p_1 cdot left[ p_2 cdot p_3 + p_4 cdot p_5 – p_2 cdot p_3 cdot p_4 cdot p_5
ight] cdot left[ p_6 cdot p_7 + p_8 cdot p_9 – p_6 cdot p_7 cdot p_8 cdot p_9
ight]. $$

Если заданы надежности отдельных элементов $p_i$, подставляя их в формулу, можно найти вероятность работы схемы.

Алгоритм разбора схемы

  • Выделяем в схеме основу: группы элементов, соединенные ТОЛЬКО последовательно или ТОЛЬКО параллельно между собой. Это верхний уровень. Записываем событие $X$ = (Цепь работает) как произведение или сумму соответственно.
  • Каждую полученную группу анализируем также: ищем в ней подгруппы, соединенные только последовательно или только параллельно. Записываем событие соответственно типу соединения.
  • Продолжаем до тех пор, пока не опустимся на уровень элементов (событий $A_i$).
  • Подставляем все выражения в исходную формулу, получаем итоговую запись события $X$.
  • Пользуясь формулами (1)-(3) выписываем вероятность события $P=P(X)$.
  • Подставляем числовые значения $p_i, q_i$ и находим численное значение надежности схемы $P$.
  • Если необходимо, находим вероятность отказа цепи $1-P$.

Примеры решений

Отработаем несколько раз этот алгоритм на примерах, чтобы он закрепился.

Пример 1. Дана схема включения элементов. Вероятность безотказной работы каждого элемента в течение времени Т равна р. Элементы работают независимо и включены в цепь по приведенной схеме. Пусть событие $А_i$ означает безотказную работу за время Т элемента с номером $i$ ($i=1,2,3,…$), а событие $В$ – безотказную работу цепи. Требуется:
1) Написать формулу, выражающую событие $В$ через все события $А_i$.
2) Найти вероятность события $B$.
3) Вычислить $Р(В)$ при $р=0,6$.

Приступим к разбору схемы. Можно увидеть, что на первом уровне мы имеем три группы, соединенные последовательно: (1), (2,3) и (4,5,6) элементы. Выделим их цветом для наглядности:

Значит, исходное событие можно представить в виде произведения трех событий $B=B_1 cdot B_2 cdot B_3$, где $B_i$ – работает $i$-aя группа элементов.

Первая группа элементов состоит из одного элемента, то есть $B_1=A_1$.

Вторая группа элементов состоит из двух элементов, соединенных параллельно (см. розовые), поэтому $B_2=A_2+A_3$.

Третья группа элементов (см. зеленые) состоит из трех элементов, ее можно представить как параллельное соединение двух подгрупп: (4 и 5, соединены последовательно) и (6), поэтому $B_3=A_4 cdot A_5 + A_6$.

Подставляем все и получаем выражение для события $B$

$$ B=B_1 cdot B_2 cdot B_3 = A_1 cdot (A_2+A_3) cdot (A_4 cdot A_5 + A_6). $$

Теперь выразим вероятность безотказной работы цепи за время T. Сначала применим формулу (1), чтобы раскрыть произведение:

$$ P(B)=P left( A_1 cdot (A_2+A_3) cdot (A_4 cdot A_5 + A_6)
ight) = P(A_1) cdot P left( A_2+A_3
ight) cdot P left( A_4 cdot A_5 + A_6
ight) = $$

Раскроем вторую вероятность по формуле (3), а третью по формуле (2), получим:

$$= P(A_1) cdot left(1 – P(overline) cdot P(overline)
ight) cdot left( P(A_4) cdot P(A_5) + P(A_6) – P(A_4) cdot P(A_5) cdot P(A_6)
ight).$$

Подставляем $P(A_i)=p$ и получим:

$$ p(B)=pcdot(1-(1-p)cdot(1-p))cdot(pcdot p + p -p cdot p cdot p) = pcdotleft(1-(1-p)^2
ight)cdot left(p+p^2-p^3
ight). $$

Осталось только найти значение при $p=0,6$:

$$ p(B)= 0,6cdotleft(1-(1-0,6)^2
ight)cdot left(0,6+0,6^2-0,6^3
ight) approx 0,375. $$

Пример 2. Найти вероятность обрыва цепи, если вероятность отказа каждого элемента равна 0,2, а отказы элементов – независимые события.

Пронумеруем элементы и сразу раскрасим схему, чтобы выделить ее структуру.

Это опять последовательная схема, но розовая группа состоит из двух элементов, соединенных параллельно, поэтому можем сразу выписать:

$$ X= A_1 cdot (A_2+A_3) cdot A_4 cdot A_5. $$

Найдем вероятность этого события (работы цепи):

$$ P(X)= P left( A_1 cdot (A_2+A_3) cdot A_4 cdot A_5
ight)= P(A_1) cdot P(A_2+A_3) cdot P(A_4) cdot P(A_5)= \ = P(A_1) cdot left( 1- P(overline) cdot P(overline)
ight) cdot P(A_4) cdot P(A_5). $$

Вероятности отказа элементов цепи равна 0,2, вероятность работы элементов – 0,8, поэтому

$$ P(X)= 0,8 cdot left( 1- 0,2 cdot 0,2
ight) cdot 0,8 cdot 0,8 = 0,492. $$

Но в задаче требовалось найти вероятность обрыва цепи, это противоположное событие:

$$ P(overline) = 1- P(X) = 1-0,492 = 0,508. $$

Пример 3. Найти вероятность безотказной работы функциональной цепи, состоящей из независимо работающих элементов, если вероятность надежной работы элементов равна $p_1=p_2=p_3=p_4=0,8$, $p_5=p_6=p_7=0,9$.

Приступим к решению, сразу раскрасив схему. В этот раз схема на первом уровне имеет параллельное соединение: верхняя розово-зеленая группа и нижняя желтая находятся на параллельных линиях. Поэтому $X=X_1+X_2$, где $X_1$ – работает розово-зеленая линия, $X_2$ – работает желтая.

Для желтой группы, состоящей из трех последовательно расположенных элементов, сразу выписываем $X_2=A_5 cdot A_6 cdot A_7$.

Теперь рассмотрим верхнюю группу. Она состоит из двух подгрупп, связанных последовательно: розовой и зеленой. При этом каждая из них состоит из двух параллельно соединенных элементов. Записываем: розовая группа работает = $A_1+A_2$, зеленая группа работает = $A_3+A_4$, значит ток проходит через розово-зеленую группу $X_1 =(A_1+A_2) cdot (A_3+A_4)$.

Объединяем рассуждения и выписываем событие, соответствующее безотказной работе цепи:

$$ X=X_1+X_2 = (A_1+A_2) cdot (A_3+A_4) + A_5 cdot A_6 cdot A_7. $$

Следующий шаг: выразить вероятность этого события. Во всех предыдущих примерах схема на первом уровне была последовательной, и событие выражалось как произведение. В этом случае схема на первом уровне параллельна, событие выглядит как сумма других событий, что немного усложняет выкладки. Для суммы событий можно использовать формулу (2) или (3), выбирая наиболее удобную в каждом конкретном случае.

Читайте также:  Как перепрошить lg p705

В данном случае слагаемых всего два, поэтому возьмем формулу (2):

$$ P(X)= P left( (A_1+A_2) cdot (A_3+A_4) + A_5 cdot A_6 cdot A_7
ight) = \ = P left( (A_1+A_2) cdot (A_3+A_4)
ight) + P left( A_5 cdot A_6 cdot A_7
ight) – P left( (A_1+A_2) cdot (A_3+A_4) cdot A_5 cdot A_6 cdot A_7
ight) $$

Раскрываем все произведения по формуле (1):

$$ = P (A_1+A_2) cdot P(A_3+A_4) + P(A_5) cdot P(A_6) cdot P(A_7) – P (A_1+A_2) cdot P(A_3+A_4) cdot P(A_5) cdot P(A_6) cdot P(A_7) = $$

По формуле (3) расписываем $P(A_1+A_2)=1-P(overline) cdot P(overline) = 1-q_1cdot q_2$ и $P(A_3+A_4)=1-P(overline) cdot P(overline)= 1-q_3cdot q_4$.

$$ P(X)= (1-q_1cdot q_2) cdot (1-q_3cdot q_4) + p_5 cdot p_6 cdot p_7 – \- (1-q_1cdot q_2) cdot (1-q_3cdot q_4) cdot p_5 cdot p_6 cdot p_7. $$

Подставляем значения надежности элементов:

$$ P(X)= (1-0,2^2)^2 + 0,9^3 – (1-0,2^2)^2 cdot 0,9^3 approx 0,9788. $$

На закуску: схема с мостиком

Для 99% учебных задач вам хватит той теории и примеров, что приведены выше: подробно изучите их и приступайте к своим примерам по аналогии. Но есть такие схемы, для которых нельзя выделить единую структуру на верхнем уровне – параллельную или последовательную, и весь алгоритм решения рушится.

Речь идет о схемах смешанного типа, еще их часто называют схемами с мостиком (мостиковые схемы). Типичная схема имеет такой вид:

Видно, что как ни крути, схему нельзя отнести ни к последовательным, ни к параллельным. Элемент №5 (мостик) "портит" тип схемы. Если его убрать (разорвать этот участок цепи), получим обычную параллельную структуру, а если предположить, что через этот участок всегда идет ток – последовательную (конкретные схемы изобразим ниже).

Поэтому для решения задачи о вычислении надежности подобной электросхемы используют формулу полной вероятности в форме теоремы разложения (см. подробнее тут, стр. 118)

Надежность цепи с избыточностью равна произведению вероятности безотказной работы $i$-го элемента цепи на вероятность безотказной работы оставшейся цепи (места подключения $i$-го элемента замкнуты накоротко) плюс произведение вероятности отказа того же $i$-го элемента на вероятность безотказной работы оставшейся цеии (места подключения $i$-го элемента разомкнуты).

То есть, для выделенного на схеме элемента-мостика рассматриваем две гипотезы:
$H_1$ = (Элемент 5 не пропускает ток), $P(H_1)=1- p_5 = q_5$;
$H_2$ = (Элемент 5 пропускает ток), $P(H_2)=p_5$.

Далее вычисляем надежность схемы при условии верности каждой из гипотез. Для наглядности нарисуем обе схемы:

Рассмотрим левую схему, верную при гипотезе $H_1$, через нее проходит ток, если $X|H_1 = A_1cdot A_3+ A_2cdot A_4$, вероятность

$$ P(X|H_1) = P(A_1cdot A_3+ A_2cdot A_4)= P(A_1cdot A_3)+ P(A_2cdot A_4) – P(A_1cdot A_3 cdot A_2cdot A_4)=\ =p_1 cdot p_3 + p_2 cdot p_4 – p_1 cdot p_2 cdot p_3 cdot p_4. $$

Рассмотрим правую схему, верную при гипотезе $H_2$, и выпишем для нее аналогично событие и вероятность прохода тока:

$$ X|H_2 = (A_1+A_2)cdot (A_3+A_4),\ P(X|H_2) =P( (A_1+A_2)cdot (A_3+A_4)) = P(A_1+A_2)cdot P(A_3+A_4)=\ = (1-P(overline) cdot P(overline)) cdot (1-P(overline) cdot P(overline)) = (1-q_1cdot q_2) cdot (1-q_3cdot q_4). $$

Тогда по формуле полной вероятности, надежность схемы равна:

$$ P(X)=P(X|H_1)cdot P(H_1) + P(X|H_2)cdot P(H_2) = \ = q_5 (p_1 cdot p_3 + p_2 cdot p_4 – p_1 cdot p_2 cdot p_3 cdot p_4) + p_5 (1-q_1cdot q_2) cdot (1-q_3cdot q_4). $$

Аналогичным образом можно разбирать более сложные схемы (в которые более одного мостика), применяя на каждом этапе формулу полной вероятности (как бы вкладывая одну в другую).

Полезные ссылки по ТВ

Решебник по вероятности

А здесь вы найдете разные задачи по теории вероятностей с полными решениями (вводите часть текста для поиска своей задачи):

Электрическая цепь прибора составлена по схеме, приведенной на рисунке Вашего варианта. Событие Ak=. k=1,2,…,6. Отказы элементов являются независимыми в совокупности событиями. Известна надежность k-го элемента (соответственно – вероятность отказа). Событие B=<разрыв цепи>. Выразить событие B в алгебре событий Ak. Найти вероятность отказа прибора и вероятность надежности схемы. p1=p2=0.9, p3=p4=0.8, p5=p6=0.85.

задан 2 Июн ’14 17:53

avkirillova89
263 ● 2 ● 5 ● 45
19&#037 принятых

Расчёт надёжности — процедура определения значений показателей надежности объекта с использованием методов, основанных на их вычислении по справочным данным о надежности элементов объекта, по данным о надежности объектов-аналогов, данным о свойствах материалов и другой информации, имеющейся к моменту расчета.

В результате расчета определяются количественные значения показателей надёжности.

Содержание

История [ править | править код ]

Необходимость расчёта надёжности технических устройств и систем существовала с момента использования их человеком. Например, в начале 1900-х годов существовала задача оценки среднего времени горения газовых фонарей, а в середине 1930-х, благодаря работам шведского ученого В. Вейбулла (Waloddi Weibull), получила известность задача описания среднего времени наработки электронной лампы до её выхода из строя (распределение Вейбулла).

Примером поиска методов расчёта надежности является история создания ракетных комплексов Фау-1 и Фау-2 Вернером фон Брауном [1] . В лаборатории Брауна тогда работал немецкий математик Эрик Пьеружка (Eric Pieruschka), который доказал, что надёжность ракеты равна произведению надёжности всех компонентов, а не надёжности самого ненадёжного элемента, как считал Браун. Позднее вместе c Брауном в середине 50-х годов в США работал немецкий инженер Роберт Луссер (Robert Lusser), который сформулировал основные теоретические положения будущей теории надёжности. Его формула для расчета надёжности системы с последовательным соединением элементов стала известна как «Закон Луссера» (Lusser’s law).

К первым работам по расчёту надёжности в Советском Союзе можно отнести статью инженера Якуба Б. М. «Показатели и методы расчета надёжности в энергетическом хозяйстве», опубликованную в журнале «Электричество», № 18, 1934 г., и статью профессора Сифорова В. И. «О методах расчёта надёжности работы систем, содержащих большое число элементов» (Известия Академии наук СССР. Отделение технических наук. № 6, 1954 г.) Независимо от закрытых работ немецких ученых, в указанных статьях надёжность систем с последовательным соединением рассчитывалась как произведение надёжности элементов.

Первая в СССР монография по теории и расчёту надёжности — книга И. М. Маликова, А. М. Половко, Н. А. Романова, П. А. Чукреева «Основы теории и расчёта надёжности» (Ленинград, Судпромгиз, 1959 г.)

Цели расчета надёжности [ править | править код ]

Решение вопросов надежности и безопасности современных структурно-сложных технических систем и объектов осуществляется на всех стадиях жизненного цикла, от проектирования и создания, производства, до эксплуатации, использования и утилизации. При этом могут преследоваться следующие цели [2] :

  • обоснование количественных требований к надежности объекта или его составным частям;
  • сравнительный анализ надежности вариантов схемно-конструктивного построения объекта и обоснование выбора рационального варианта, в том числе по стоимостному критерию;
  • определение достигнутого (ожидаемого) уровня надежности объекта и/или его составных частей, в том числе расчетное определение показателей надежности или параметров распределения характеристик надежности составных частей объекта в качестве исходных данных для расчета надежности объекта в целом;
  • обоснование и проверку эффективности предлагаемых (реализованных) мер по доработкам конструкции, технологии изготовления, системы технического обслуживания и ремонта объекта, направленных на повышение его надежности;
  • решение различных оптимизационных задач, в которых показатели надежности выступают в роли целевых функций, управляемых параметров или граничных условий, в том числе таких, как оптимизация структуры объекта, распределение требований по надежности между показателями отдельных составляющих надежности (например, безотказности и ремонтопригодности), расчет комплектов ЗИП, оптимизация систем технического обслуживания и ремонта, обоснование гарантийных сроков и назначенных сроков службы (ресурса) объекта и др.;
  • проверку соответствия ожидаемого (достигнутого) уровня надежности объекта установленным требованиям (контроль надежности), если прямое экспериментальное подтверждение их уровня надежности невозможно технически или нецелесообразно экономически.
Читайте также:  Разлинованные листы а4 в линейку печатать

На этапе проектирования технических систем выполняется проектный расчет надежности.

Проектный расчет надежности — процедура определения значений показателей надежности объекта на этапе проектирования с использованием методов, основанных на их вычислении по справочным и другим данным о надежности элементов объекта, имеющихся к моменту расчета.

Проектный расчет надежности входит в состав обязательных работ по обеспечению надежности любой автоматизированной системы и выполняется на основе требований нормативно-технической документации (ГОСТ 27.002-89, ГОСТ 27.301-95, ГОСТ 24.701-86).

На этапе испытаний и эксплуатации расчёт надёжности проводится для оценки количественных показателей надёжности спроектированной системы.

Методы расчёта надёжности [ править | править код ]

Структурные методы расчета надежности [ править | править код ]

Структурные методы являются основными методами расчета показателей надежности в процессе проектирования объектов, поддающихся разукрупнению на элементы, характеристики надежности, которых в момент проведения расчетов известны или могут быть определены другими методами. Расчет показателей надежности структурными методами в общем случае включает:

  • представление объекта в виде структурной схемы, описывающей логические соотношения между состояниями элементов и объекта в целом с учетом структурно-функциональных связей и взаимодействия элементов, принятой стратегии обслуживания, видов и способов резервирования и других факторов;
  • описание построенной структурной схемы надежности объекта адекватной математической моделью, позволяющей в рамках введенных предположений и допущений вычислить показатели надежности объекта по данным о надежности его элементов в рассматриваемых условиях применения.

В качестве структурных схем надежности могут применяться:

Логико-вероятностный метод [ править | править код ]

В логико-вероятностных методах (ЛВМ) исходная постановка задачи и построение модели функционирования исследуемого системного объекта или процесса осуществляется структурными и аналитическими средствами математической логики, а расчет показателей свойств надежности, живучести и безопасности выполняется средствами теории вероятностей.

ЛВМ являются методологией анализа структурно-сложных систем, решения системных задач организованной сложности, оценки и анализа надежности, безопасности и риска технических систем. ЛВМ удобны для исходной формализованной постановки задач в форме структурного описания исследуемых свойств функционирования сложных и высокоразмерных систем. В ЛВМ разработаны процедуры преобразования исходных структурных моделей в искомые расчетные математические модели, что позволяет выполнить их алгоритмизацию и реализацию на ЭВМ.

Основоположником научно-технического аппарата ЛВМ и прикладных аспектов их применения, а также создателем и руководителем научной школы является профессор Рябинин И. А..

Общий логико-вероятностный метод [ править | править код ]

Необходимость распространения ЛВМ на немонотонные процессы привела к созданию общего логико-вероятностного метода (ОЛВМ). В ОЛВМ расчета надежности аппарат математической логики используется для первичного графического и аналитического описания условий реализации функций отдельными и группами элементов в проектируемой системе, а методы теории вероятностей и комбинаторики применяются для количественной оценки безотказности и/или опасности функционирования проектируемой системы в целом. Для использования ОЛВМ должны задаваться специальные структурные схемы функциональной целостности исследуемых систем, логические критерии их функционирования, вероятностные и другие параметры элементов.

В основе постановки и решения всех задач моделирования и расчета надежности систем с помощью ОЛВМ лежит так называемый событийно-логический подход. Этот подход предусматривает последовательное выполнение следующих четырёх основных этапов ОЛВМ:

  • этап структурно-логической постановки задачи;
  • этап логического моделирования;
  • этап вероятностного моделирования;
  • этап выполнения расчетов показателей надежности.

Метод деревьев отказов [ править | править код ]

Метод Марковского моделирования [3] [ править | править код ]

Примеры расчета надежности систем простой структуры [ править | править код ]

Последовательная система [ править | править код ]

В системе с последовательной структурой отказ любого компонента приводит к отказу системы в целом.

Система логических уравнений для приведенной выше последовательной системы:

< y 1 = x 1 y 2 = y 1 ∧ x 2 y 3 = y 2 ∧ x 3 <displaystyle <eginy_<1>=x_<1>\y_<2>=y_<1>land x_<2>\y_<3>=y_<2>land x_<3>end>>

Логическая функция работоспособности (решение системы логических уравнений):

Y s = x 1 ∧ x 2 ∧ x 3 <displaystyle Y_=x_<1>land x_<2>land x_<3>>

Вероятность безотказной работы:

P s = p 1 ⋅ p 2 ⋅ p 3 <displaystyle P_=p_<1>cdot p_<2>cdot p_<3>>

где p 1 , p 2 , p 3 <displaystyle p_<1>,p_<2>,p_<3>> — вероятности безотказной работы компонентов.

В общем случае вероятность безотказной работы системы равна: P s = ∏ i = 1 N p i <displaystyle P_=prod _^p_>

Параллельная система [ править | править код ]

В системе с параллельной структурой отказ системы в целом происходит только при отказе всех элементов.

Система логических уравнений для приведенной параллельной системы: < y 1 = x 1 y 2 = x 2 y 3 = x 3 <displaystyle <eginy_<1>=x_<1>\y_<2>=x_<2>\y_<3>=x_<3>end>> Логическая функция работоспособности (решение системы логических уравнений):

Y p = x 1 ∨ x 2 ∨ x 3 <displaystyle Y_

=x_<1>lor x_<2>lor x_<3>>

Вероятность безотказной работы:

P p = 1 − ( 1 − p 1 ) ⋅ ( 1 − p 2 ) ⋅ ( 1 − p 3 ) <displaystyle P_

=1-(1-p_<1>)cdot (1-p_<2>)cdot (1-p_<3>)>

В общем случае вероятность безотказной работы системы равна:

P p = 1 − ∏ i = 1 N ( 1 − p i ) <displaystyle P_

=1-prod _^(1-p_)>

Система типа k из n [ править | править код ]

Вероятность того, что в системе, состоящей из n <displaystyle n> одинаковых (равнонадежных) элементов, безотказно работают ровно k <displaystyle k> элементов, может быть вычислена по формуле [4] :

P e ( t , k , n ) = ( n k ) p ( t ) k q ( t ) n − k , k = 0 , 1 , 2 , … , n <displaystyle P_(t,k,n)=<inom >p(t)^q(t)^,quad k=0,1,2,ldots ,n> ,

p ( t ) <displaystyle p(t)> — вероятность безотказной работы элемента системы; q ( t ) = 1 − p ( t ) ; <displaystyle q(t)=1-p(t);> ( n k ) = n ! k ! ( n − k ) ! <displaystyle =<frac >> — биномиальный коэффициент из n <displaystyle n> по k <displaystyle k> .

Вероятность того, что в системе, состоящей из n <displaystyle n> одинаковых и равнонадежных элементов, безотказно работают не менее k <displaystyle k> элементов, может быть вычислена по формуле [4] :

P ( k ) = ∑ i = k n ( n i ) p ( t ) i q ( t ) n − i <displaystyle P(k)=sum _^<<inom >p(t)^q(t)^>>

Вероятность того, что в системе, состоящей из n <displaystyle n> одинаковых и равнонадежных элементов, безотказно работают не менее k <displaystyle k> элементов, может быть выражена через вероятности безотказной работы аналогичной системы меньшей размерности [4] :

P ( k ) = P ( k − 1 ) + P e ( t , k , n ) <displaystyle P(k)=P(k-1)+P_(t,k,n)>

Некоторые программные пакеты для расчета надежности [ править | править код ]

Программные средства, предназначенные для анализа и расчета надежности, готовности и ремонтопригодности (в алфавитном порядке) [5] [6] [7] [8] :

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector