Сумма чисел от 1 до бесконечности

Ряд из натуральных чисел — числовой ряд, члены которого являются последовательными натуральными числами: 1 + 2 + 3 + 4 + … <displaystyle 1+2+3+4+ldots > ; при этом n -я частичная сумма ряда является треугольным числом:

∑ k = 1 n k = n ( n + 1 ) 2 , <displaystyle sum _^k=<frac <2>>,>

которое неограниченно растёт при стремлении n <displaystyle n> к бесконечности. Из-за того, что последовательность частичных сумм ряда не имеет конечного предела, ряд расходится.

Несмотря на расходимость в традиционном смысле, некоторые обобщённые операции над натуральным рядом позволяют получить выводы, находящие применение в комплексном анализе, квантовой теории поля [ источник не указан 495 дней ] и теории струн [ источник не указан 495 дней ] .

Содержание

Сумма в обобщённом смысле [ править | править код ]

Специальные методы суммирования, использующиеся в некоторых разделах математики, позволяют присвоить конечные значения расходящимся числовым рядам. В частности, один из таких способов предоставляет метод, основанный на регуляризации аналитического продолжения дзета-функции Римана и суммирование по методу Рамануджана ( англ. ) , позволяют сопоставить данному ряду некое конечное значение [1] :

1 + 2 + 3 + 4 + ⋯ = − 1 12 , <displaystyle 1+2+3+4+cdots =-<frac <1><12>>,>

в обобщённом смысле суммы.

Частичные суммы [ править | править код ]

Частичными суммами натурального ряда являются 1, 3, 6, 10, 15 и т. д. Таким образом, n -я частичная сумма выражается формулой

∑ k = 1 n k = n ( n + 1 ) 2 . <displaystyle sum _^k=<frac <2>>.>

Это выражение было известно ещё Пифагору в VI веке до нашей эры [2] . Числа такого вида называются треугольными, так как они могут быть представлены в виде треугольника.

Бесконечная последовательность треугольных чисел стремится к + ∞ <displaystyle +infty > и, следовательно, бесконечная сумма натурального ряда также стремится к + ∞ <displaystyle +infty > . Такой результат является следствием невыполнения необходимого условия сходимости числового ряда.

Суммируемость [ править | править код ]

В сравнении с другими классическими расходящимися рядами, натуральному ряду сложнее приписать имеющее смысл некоторое конечное числовое значение. Существует множество методов суммирования, некоторые из которых являются более устойчивыми и мощными. Так, например, суммирование по Чезаро является широко известным методом, который суммирует умеренно расходящийся Ряд Гранди 1 − 1 + 1 − 1 + … и приписывает ему конечное значение 1/2. Суммирование методом Абеля представляет собой более мощный метод, который, кроме ряда Гранди, позволяет также суммировать более сложный знакочередующийся ряд натуральных чисел и присвоить ему значение 1/4.

В отличие от упомянутых выше рядов, как суммирование по Чезаро, так и метод Абеля неприменимы к натуральному ряду. Эти методы работают только со сходящимися и гармоническими рядами и не могут быть использованы для ряда, частичные суммы которого стремятся к +∞ [3] . Большинство элементарных определений суммы расходящегося ряда являются линейными и устойчивыми, а любой линейный и устойчивый метод не может присвоить натуральному ряду конечное значение. Следовательно, требуются более развитые методы, такие как регуляризация дзета-функцией или суммирование Рамануджана.

Эвристические предпосылки [ править | править код ]

В главе 8 первого сборника своих трудов Рамануджан показал, что «1 + 2 + 3 + 4 + … = −1/12», используя два способа [4] [5] [6] . Ниже излагается более простой метод, состоящий из двух этапов.

Первое ключевое наблюдение состоит в том, что ряд 1 + 2 + 3 + 4 + … похож на знакочередующийся ряд натуральных чисел 1 − 2 + 3 − 4 + … . Несмотря на то, что этот ряд также является расходящимся, с ним намного проще работать. Существует несколько классических способов присвоить конечное значение этому ряду, известных ещё с XVIII века. [7]

Для того, чтобы привести ряд 1 + 2 + 3 + 4 + … к виду 1 − 2 + 3 − 4 + … , мы можем вычесть 4 из второго члена, 8 из четвёртого члена, 12 из шестого и т. д. Общая величина, которую нужно вычесть, выражается рядом 4 + 8 + 12 + 16 + … , который получается умножением исходного ряда 1 + 2 + 3 + 4 + … на 4. Данные выражения можно записать в алгебраической форме. Что бы из себя ни представляла «сумма», введём для неё обозначение c = 1 + 2 + 3 + 4 + … , умножим полученное уравнение на 4 и вычтем второе из первого:

c = 1 + 2 + 3 + 4 + 5 + 6 + ⋯ , 4 c = 4 + 8 + 12 + ⋯ , − 3 c = 1 − 2 + 3 − 4 + 5 − 6 + ⋯ . <displaystyle <egin<7>c&<>=<>&1+2&&<>+3+4&&<>+5+6+cdots ,\4c&<>=<>&4&&<>+8&&<>+12+cdots ,\-3c&<>=<>&1-2&&<>+3-4&&<>+5-6+cdots .end>>

Второе ключевое наблюдение заключается в том, что ряд 1 − 2 + 3 − 4 + … является разложением в степенной ряд функции 1/(1 + x ) 2 при x , равном 1. Соответственно, Рамануджан заключает:

− 3 c = 1 − 2 + 3 − 4 + ⋯ = 1 ( 1 + 1 ) 2 = 1 4 . <displaystyle -3c=1-2+3-4+cdots =<frac <1><(1+1)^<2>>>=<frac <1><4>>.>

Поделив обе части на −3, получаем c = −1/12.

Строго говоря, существует неоднозначность при работе с бесконечными рядами в случае использования методов, предназначенных для конечных сумм (наподобие тех методов, что были использованы выше), в особенности если эти бесконечные ряды расходятся. Неоднозначность заключается в том, что если вставить ноль в любое место в расходящемся ряде, существует вероятность получить противоречивый результат. Например, действие 4 c = 0 + 4 + 0 + 8 + … противоречит свойствам сложения.

Одним из способов обойти данную неопределённость и тем самым ограничить позиции, куда можно вставить ноль, является присвоение каждому члену ряда значения некоторой функции. [8] Для ряда 1 + 2 + 3 + 4 + … , каждый член n представляет собой натуральное число, которое может быть представлено в виде функции ns , где s — некоторая комплексная переменная. Используя данное представление, можно гарантировать, что все члены ряда последовательны. Таким образом, присвоив s значение −1, можно выразить рассматриваемый ряд в строгом виде. Реализация данного способа носит название регуляризации дзета-функцией.

Регуляризация дзета-функцией [ править | править код ]

В данном методе, ряд ∑ n = 1 ∞ n <displaystyle sum _^<infty >n> заменяется рядом ∑ n = 1 ∞ n − s <displaystyle sum _^<infty >n^<-s>> . Последний ряд является частным случаем ряда Дирихле. Если действительная часть s больше 1, ряд Дирихле сходится, и его сумма представляет собой дзета-функцию Римана ζ(s). С другой стороны, если действительная часть s меньше или равна 1, ряд Дирихле расходится. В частности, ряд 1 + 2 + 3 + 4 + . , который получается подстановкой s = −1, не является сходящимся. Преимущества перехода к дзета-функции Римана заключается в том, что, используя метод аналитического продолжения, она может быть определена для s ⩽ 1. Следовательно, мы можем получить значение регуляризованной дзета-функции ζ(−1) = −1/12.

Читайте также:  Активация origin need for speed 2015

Существует несколько способов доказать, что ζ(−1) = −1/12. . Один из методов [9] использует связь между дзета-функцией Римана и эта-функцей Дирихле ( англ. ) η(s). Эта-функция выражается знакопеременным рядом Дирихле, согласуясь тем самым с ранее представленными эвристическими предпосылками. Тогда как оба ряда Дирихле сходятся, следующие тождества верны:

ζ ( s ) = 1 − s + 2 − s + 3 − s + 4 − s + 5 − s + 6 − s + ⋯ , 2 ⋅ 2 − s ζ ( s ) = 2 ⋅ 2 − s + 2 ⋅ 4 − s + 2 ⋅ 6 − s + ⋯ , ( 1 − 2 1 − s ) ζ ( s ) = 1 − s − 2 − s + 3 − s − 4 − s + 5 − s − 6 − s + ⋯ = η ( s ) . <displaystyle <egin<8>zeta (s)&<>=<>&1^<-s>+2^<-s>&&<>+3^<-s>+4^<-s>&&<>+5^<-s>+6^<-s>+cdots ,&\2cdot 2^<-s>zeta (s)&<>=<>&2cdot 2^<-s>&&<>+2cdot 4^<-s>&&<>+2cdot 6^<-s>+cdots ,&\(1-2^<1-s>)zeta (s)&<>=<>&1^<-s>-2^<-s>&&<>+3^<-s>-4^<-s>&&<>+5^<-s>-6^<-s>+cdots &=eta (s).end>>

Тождество ( 1 − 2 1 − s ) ζ ( s ) = η ( s ) <displaystyle (1-2^<1-s>)zeta (s)=eta (s)> остаётся справедливым если мы продолжим обе функции аналитически в область значений s, где вышезаписанные ряды расходятся. Подставляя s = −1 , получим −3ζ(−1) = η(−1). Отметим, что вычисление η(−1) является более простой задачей, так как значение эта-функции выражается значением суммы Абеля соответствующего ряда [10] и представляет собой односторонний предел:

− 3 ζ ( − 1 ) = η ( − 1 ) = lim x ↗ 1 ( 1 − 2 x + 3 x 2 − 4 x 3 + ⋯ ) = lim x ↗ 1 1 ( 1 + x ) 2 = 1 4 . <displaystyle -3zeta (-1)=eta (-1)=lim _(1-2x+3x^<2>-4x^<3>+cdots )=lim _<frac <1><(1+x)^<2>>>=<frac <1><4>>.>

Поделив обе части выражения на −3, получаем ζ(−1) = −1/12.

Суммирование методом Рамануджана [ править | править код ]

Суммирование ряда 1 + 2 + 3 + 4 + . методом Рамануджана также позволяет получить значение −1/12. В своём втором письме к Х. Г. Харди, датированном 27 Февраля 1913, Рамануджан пишет [11] :

Уважаемый Сэр, я с большим удовольствием прочёл ваше письмо от 8 февраля 1913 года. Я ожидал, что вы ответите мне в том же стиле, что и профессор математики из Лондона, который посоветовал мне внимательно изучить «Бесконечные ряды» Томаса Бромвича и не попадать в ловушку, которую таят расходящиеся ряды. … Я ответил ему, что, согласно моей теории, сумма бесконечного числа членов ряда 1 + 2 + 3 + 4 + . = −1/12 . Узнав это, вы сию же минуту укажете в направлении психиатрической лечебницы. Уверяю, вы не сможете проследить нить рассуждений в моём доказательстве этого факта, если я попытаюсь изложить их в единственном письме.

Метод суммирования Рамануджана заключается в изолировании постоянного члена в формуле Эйлера — Маклорена для частичных сумм ряда. Для некоторой функции f, классическая сумма Рамануджана для ряда ∑ k = 0 ∞ f ( k ) <displaystyle sum _^<infty >f(k)> определена как

c = − 1 2 f ( 0 ) − ∑ k = 1 ∞ B 2 k ( 2 k ) ! f ( 2 k − 1 ) ( 0 ) , <displaystyle c=-<frac <1><2>>f(0)-sum _^<infty ><frac <2k>><(2k)!>>f^<(2k-1)>(0),>

где f (2k−1) представляет собой (2k−1)-ю производную функции f и B2k является 2k-м числом Бернулли: B2 = 1/6 , B4 = −1/30 и т. д. Принимая f(x) = x , первая производная f равна 1, а все остальные члены стремятся к нулю, поэтому: [12]

c = − 1 6 ⋅ 1 2 ! = − 1 12 . <displaystyle c=-<frac <1><6>>cdot <frac <1><2!>>=-<frac <1><12>>.>

Для избежания противоречий современная теория метода суммирования Рамануджана требует, чтобы функция f являлась «регулярной» в том смысле, что её производные высших порядков убывают достаточно быстро для того, чтобы оставшиеся члены в формуле Эйлера — Маклорена стремились к 0. Стоит отметить, что Рамануджан неявно подразумевал это свойство. [12] Требование регулярности помогает избежать использования метода суммирования Рамануджана для рядов типа 0 + 2 + 0 + 4 + . потому, что не существует регулярной функции, которая выражалась бы значениями такого ряда. Такой ряд должен интерпретироваться с использованием регуляризацией дзета-функцией.

Несостоятельность устойчивых линейных методов суммирования [ править | править код ]

Линейный и устойчивый метод суммирования не в состоянии присвоить конечное значение ряду 1 + 2 + 3 + . (Устойчивый означает, что добавление члена в начало ряда увеличивает сумму ряда на величину данного члена.) Данное утверждение может быть продемонстрировано следующим образом. Если

тогда, добавляя 0 к обеим частям, получаем

0 + 1 + 2 + … = 0 + x = x,

исходя из свойства устойчивости. Вычитая нижний ряд из верхнего, получаем

1 + 1 + 1 + … = xx = 0,

исходя из свойства линейности. Добавляя 0 к обеим частям повторно, получаем

0 + 1 + 1 + 1 + … = 0

и вычитая два последних ряда, приходим к

что противоречит свойству устойчивости.

Методы, использованные выше, для суммирования 1 + 2 + 3 + … являются либо только устойчивыми, либо только линейными. Например, существует два разных метода, называемых регуляризацией дзета-функцией. Первый является устойчивым, но нелинейным и определяет сумму a + b + c + … множества чисел как значение аналитического продолжения выражения 1/a s + 1/b s + 1/c s + при s = −1. Второй метод линейный, но неустойчивый и определяет сумму последовательности чисел как значение аналитического продолжения выражения a/1 s + b/2 s + c/3 s при s = 0. Оба метода присваивают ряду 1 + 2 + 3 + … значение суммы ζ(−1) = −1/12.

Применение в физике [ править | править код ]

Значение −1/12 встречается в теории бозонных струн при попытке рассчитать возможные энергетические уровни струны, а именно низший энергетический уровень. [ источник не указан 495 дней ]

Регуляризация ряда 1 + 2 + 3 + 4 + . также встречается при расчёте эффекта Казимира для скалярного поля в одномерном пространстве. [13] Похожие вычисления возникают для трёхмерного пространства, однако в этом случае вместо дзета-функции Римана используются реальные [ уточнить ] аналитические ряды Эйзенштейна. [14]

Вопрос ученому: — Я слышал, что сумма всех натуральных чисел равна −1/12. Это какой-то фокус, или это правда?

Ответ пресс-службы МФТИ — Да, такой результат можно получить при помощи приема, называемого разложением функции в ряд.

Вопрос, заданный читателем, достаточно сложный, и потому мы отвечаем на него не обычным для рубрики «Вопрос ученому» текстом на несколько абзацев, а некоторым сильно упрощенным подобием математической статьи.

В научных статьях по математике, где требуется доказать некоторую сложную теорему, рассказ разбивается на несколько частей, и в них могут поочередно доказываться разные вспомогательные утверждения. Мы предполагаем, что читатели знакомы с курсом математики в пределах девяти классов, поэтому заранее просим прощения у тех, кому рассказ покажется слишком простым — выпускники могут сразу обратиться к http://en.wikipedia.org/wiki/Ramanujan_summation.

Начнем с разговора о том, как можно сложить все натуральные числа. Натуральные числа — это числа, которые используются для счета цельных предметов — они все целые и неотрицательные. Именно натуральные числа учат дети в первую очередь: 1, 2, 3 и так далее. Сумма всех натуральных чисел будет выражением вида 1+2+3+. = и так до бесконечности.

Читайте также:  Звук на левую колонку

Ряд натуральных чисел бесконечен, это легко доказать: ведь к сколь угодно большому числу всегда можно прибавить единицу. Или даже умножить это число само на себя, а то и вычислить его факториал — понятно, что получится еще большая величина, которая тоже будет натуральным числом.

Детально все операции с бесконечно большими величинами разбираются в курсе математического анализа, но сейчас для того, чтобы нас поняли еще не сдавшие данный курс, мы несколько упростим суть. Скажем, что бесконечность, к которой прибавили единицу, бесконечность, которую возвели в квадрат или факториал от бесконечности — это все тоже бесконечность. Можно считать, что бесконечность — это такой особый математический объект.

И по всем правилам математического анализа в рамках первого семестра сумма 1+2+3+. +бесконечность — тоже бесконечна. Это легко понять из предыдущего абзаца: если к бесконечности что-то прибавить, она все равно будет бесконечностью.

Однако в 1913 году блестящий индийский математик-самоучка Сриниваса Рамануджан Айенгор придумал способ сложить натуральные числа несколько иным образом. Несмотря на то, что Рамануджан не получал специального образования, его знания не были ограничены сегодняшним школьным курсом — математик знал про существование формулы Эйлера-Маклорена. Так как она играет важную роль в дальнейшем повествовании, о ней придется тоже рассказать подробнее.

Для начала запишем эту формулу:

Как можно видеть, она достаточно сложна. Часть читателей может пропустить этот раздел целиком, часть может прочитать соответствующие учебники или хотя бы статью в Википедии, а для оставшихся мы дадим краткий комментарий. Ключевую роль в формуле играет произвольная функция f(x), которая может быть почти чем угодно, лишь бы у нее нашлось достаточное число производных. Для тех, кто не знаком с этим математическим понятием (и все же решился прочитать написанное тут!), скажем еще проще — график функции не должен быть линией, которая резко ломается в какой-либо точке.

Производная функции, если предельно упростить ее смысл, является величиной, которая показывает то, насколько быстро растет или убывает функция. С геометрической точки зрения производная есть тангенс угла наклона касательной к графику.

Слева в формуле стоит сумма вида «значение f(x) в точке m + значение f(x) в точке m+1 + значение f(x) в точке m+2 и так до точки m+n». При этом числа m и n — натуральные, это надо подчеркнуть особо.

Справа же мы видим несколько слагаемых, и они кажутся весьма громоздкими. Первое (заканчивается на dx) — это интеграл функции от точки m до точки n. Рискуя навлечь на себя гнев всей кафедры математики за примитивность подхода к интегралам, скажем, что это площадь под кривой f(x) на графике от m до n; интегралы очень широко используются в самых разных науках.

На графике «по горизонтальной оси — время, по вертикальной — скорость» интеграл, то есть площадь под кривой, будет равен пройденному пути. На графике «ежемесячные платежи по вертикали, по горизонтали время» интегралом будет сумма, пришедшая на счет за все время.

Третье слагаемое — сумма от чисел Бернулли (B2k), поделенных на факториал удвоенного значения числа k и умноженных на разность производных функции f(x) в точках n и m. Причем, что еще сильнее усложняет дело, тут не просто производная, а производная 2k-1 порядка. То есть все третье слагаемое выглядит так:

Число Бернулли B2 («2» так как в формуле стоит 2k, и мы начинаем складывать с k=1) делим на факториал 2 (это пока просто двойка) и умножаем на разность производных первого порядка (2k-1 при k=1) функции f(x) в точках n и m

Число Бернулли B4 («4» так как в формуле стоит 2k, а k теперь равно 2) делим на факториал 4 (1×2х3×4=24) и умножаем на разность производных третьего порядка (2k-1 при k=2) функции f(x) в точках n и m

Число Бернулли B6 (см.выше) делим на факториал 6 (1×2х3×4х5×6=720) и умножаем на разность производных пятого порядка (2k-1 при k=3) функции f(x) в точках n и m

Суммирование продолжается вплоть до k=p. Числа k и p получаются некоторыми произвольными величинами, которые мы можем выбирать по-разному, вместе с m и n — натуральными числами, которыми ограничен рассматриваемый нами участок с функцией f(x). То есть в формуле целых четыре параметра, и это вкупе с произвольностью функции f(x) открывает большой простор для исследований.

Оставшееся скромное R, увы, тут не константа, а тоже довольно громоздкая конструкция, выражаемая через уже упомянутые выше числа Бернулли. Теперь самое время пояснить, что это такое, откуда взялось и почему вообще математики стали рассматривать столь сложные выражения.

Числа Бернулли и разложения в ряд

В математическом анализе есть такое ключевое понятие как разложение в ряд. Это значит, что можно взять какую-то функцию и написать ее не напрямую (например y = sin(x^2) + 1/ln(x) + 3x), а в виде бесконечной суммы множества однотипных слагаемых. Например, многие функции можно представить как сумму степенных функций, умноженных на некоторые коэффициенты — то есть сложной формы график сведется к комбинации линейной, квадратичной, кубической. и так далее — кривых.

В теории обработки электрических сигналов огромную роль играет так называемый ряд Фурье — любую кривую можно разложить в ряд из синусов и косинусов разного периода; такое разложение необходимо для преобразования сигнала с микрофона в последовательность нулей и единиц внутри, скажем, электронной схемы мобильного телефона. Разложения в ряд также позволяют рассматривать неэлементарные функции, а ряд важнейших физических уравнений при решении дает именно выражения в виде ряда, а не в виде какой-то конечной комбинации функций.

В XVII столетии математики стали вплотную заниматься теорией рядов. Несколько позже это позволило физикам эффективно рассчитывать процессы нагрева различных объектов и решать еще множество иных задач, которые мы здесь рассматривать не будем. Заметим лишь то, что в программе МФТИ, как и в математических курсах всех ведущих физических вузов, уравнениям с решениями в виде того или иного ряда посвящен как минимум один семестр.

Читайте также:  Чем отличается гостиничный телевизор от обычного

Якоб Бернулли исследовал проблему суммирования натуральных чисел в одной и той же степени (1^6 + 2^6 + 3^6 + . например) и получил числа, при помощи которых можно разложить в упомянутый выше степенной ряд другие функции — например, tg(x). Хотя, казалось бы, тангенс не очень-то похож хоть на параболу, хоть на какую угодно степенную функцию!

Полиномы Бернулли позже нашли свое применение не только в уравнениях матфизики, но и в теории вероятностей. Это, в общем-то, предсказуемо (ведь ряд физических процессов — вроде броуновского движения или распада ядер — как раз и обусловлен разного рода случайностями), но все равно заслуживает отдельного упоминания.

Громоздкая формула Эйлера-Маклорена использовалась математиками для разных целей. Так как в ней, с одной стороны, стоит сумма значений функций в определенных точках, а с другой — есть и интегралы, и разложения в ряд, при помощи этой формулы можно (в зависимости от того, что нам известно) как взять сложный интеграл, так и определить сумму ряда.

Сриниваса Рамануджан придумал этой формуле иное применение. Он ее немного модифицировал и получил такое выражение:

В качестве функции f(x) он рассмотрел просто x — пусть f(x) = x, это вполне правомерное допущение. Но для этой функции первая производная равна просто единице, а вторая и все последующие — нулю: если все аккуратно подставить в указанное выше выражение и определить соответствующие числа Бернулли, то как раз и получится −1/12.

Это, разумеется, было воспринято самим индийским математиком как нечто из ряда вон выходящее. Поскольку он был не просто самоучкой, а талантливым самоучкой, он не стал всем рассказывать про поправшее основы математики открытие, а вместо этого написал письмо Годфри Харди, признанному эксперту в области как теории чисел, так и математического анализа. Письмо, кстати, содержало приписку, что Харди, вероятно, захочет указать автору на ближайшую психиатрическую лечебницу: однако итогом, конечно, стала не лечебница, а совместная работа.

Суммируя все сказанное выше, получим следующее: сумма всех натуральных чисел получается равной −1/12 при использовании специальной формулы, которая позволяет разложить произвольную функцию в некоторый ряд с коэффициентами, называемыми числами Бернулли. Однако это не значит, что 1+2+3+4 оказывается больше, чем 1+2+3+. и так до бесконечности. В данном случае мы имеем дело с парадоксом, который обусловлен тем, что разложение в ряд — это своего рода приближение и упрощение.

Можно привести пример намного более простого и наглядного математического парадокса, связанного с выражением чего-то одного через что-то другое. Возьмем лист бумаги в клеточку и нарисуем ступенчатую линию с шириной и высотой ступеньки в одну клетку. Длина такой линии, очевидно, равна удвоенному числу клеток — а вот длина спрямляющей «лесенку» диагонали равна числу клеток, умноженному на корень из двух. Если сделать лесенку очень мелкой, она все равно будет той же длины и практически не отличимая от диагонали ломаная линия окажется в корень из двух раз больше той самой диагонали! Как видите, для парадоксальных примеров писать длинные сложные формулы вовсе не обязательно.

Формула Эйлера-Маклорена, если не вдаваться в дебри математического анализа, является таким же приближением, как и ломаная линия вместо прямой. Используя это приближение можно получить те самые −1/12, однако это далеко не всегда бывает уместно и оправдано. В ряде задач теоретической физики подобные выкладки применяются для расчетов, но это тот самый передний край исследований, где еще рано говорить о корректном отображении реальности математическими абстракциями, а расхождения разных вычислений друг с другом — вполне обычное дело.

Так, оценки плотности энергии вакуума на основе квантовой теории поля и на основе астрофизических наблюдений различаются более чем на 120 порядков. То есть в 10^120 степени раз. Это одна из нерешенных задач современной физики; тут явно просвечивает пробел в наших знаниях о Вселенной. Или же проблема — в отсутствии подходящих математических методов для описания окружающего мира. Физики-теоретики совместно с математиками пытаются найти такие способы описать физические процессы, при которых не будет возникать расходящихся (уходящих в бесконечность) рядов, но это далеко не самая простая задача.

Чему равна сумма целых натуральных чисел от 1 до бесконечности? Безусловно бесконечности, чему же еще. Однако видео по вот этой ссылке http://www.youtube.com/watch?v=E-d9mgo8FGk доказывает, что сумма натуральных чисел равна -1/12. Минус одна/двенадцатая!

Сопровождающий текст на английском, но математика понятна и доступна ученику начальных классов без перевода. Только сложения, вычитания, никаких сложных действий.

Засада кроется в самом начале. Когда авторы рассматривают последовательность 1-1+1-1+1-. они утверждают, что там, в бесконечности, в конце концов результат этой последовательности действий будет либо "один" либо "ноль". Однако мы не знаем, где она там закончится, поэтому вывод – результат равен 1/2. Если принять это за основу все дальнейшее становится логичным и сумма всех натуральных чисел действительно равно -1/12.

Не могу притянуть математику, чтобы опровергнуть первый расчет 1/2. Если идти через лимиты, то не совсем понятно, какую функцию подставить. Интегральная оценка действительно должна дать в пределе 1/2. Оптическая – возьмем белый цвет и черный и будем быстро их переключать – тоже даст серый 1/2 &#128578; Вероятностная тем более.

По хорошему если описать 1-1+1-1+1-. функцией, то значение функции при числе элементов равное бесконечности должно быть не определено. Соответственно все остальные рассуждения дальше рушатся. Но может быть есть другие варианты? У кого как с математикой?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector