Скорость холостого хода двигателя постоянного тока

Электродвигатели постоянного тока могут иметь независимое, параллельное, последовательное или смешанное возбуждение (рис. 6.1).

Рис. 6.1. Схемы электродвигателей постоянного тока независимого (а),

параллельного (б), последовательного (в) и смешанного (г) возбуждения

(верхняя часть схемы «в» принадлежит схеме «а»)

В электродвигателе параллельного возбуждения обмотка возбуждения присоединяется параллельно к зажимам якоря. Но ток, протекающий по этой обмотке, в отличие от тока якоря не зависит от нагрузки и определяется приложенным к якорю напряжением и общим сопротивлением цепи возбуждения. По этой причине электродвигатель параллельного возбуждения называют также электродвигателем с независимым возбуждением.

Вращающий момент М двигателя постоянного тока и его ЭДС Е определяются по формулам

где к – конструктивный коэффициент двигателя;

Ф – магнитный поток, Вб;

ω – угловая скорость, рад/с.

Уравнения электромеханической ω = ƒ (Iя) и механической ω = ƒ (М) характеристик имеют вид

Угловая скорость идеального холостого хода (при Iя = 0 или М = 0)

На рис. 6.2 представлены механические характеристики двигателя постоянного тока с независимым возбуждением (ДПТ НВ) во всех режимах работы. Характерными точками характеристик в двигательном режиме являются: точка идеального холостого хода (ω, М = 0); точка номинального режима (ωн, Мн); точка короткого замыкания (ω = 0, М = Мк).

Жесткость механической характеристики определяется потоком возбуждения и сопротивлением якорной цепи:

Рис. 6.2. Совмещенные механические характеристики двигателя постоянного тока с независимым возбуждением

Наибольшее значение модуля жесткости соответствует естественной механической характеристике, так как ток возбуждения равен номинальному и регулировочное сопротивление Rр = 0. По мере увеличения сопротивления реостата Rр наклон механической характеристики возрастает, а угловая скорость снижается. При заданном значении сопротивления Rр и номинальном моменте Мн угловая скорость двигателя

Для расчета механических характеристик необходимо знать сопротивление якоря двигателя Rя, которое задается в каталогах. При отсутствии заводских данных величину Rя находят ориентировочно по формуле

Так как механические характеристики ДПТ НВ прямолинейны, для их построения достаточно иметь две точки:

Для ДПТ НВ возможны следующие три режима электрического торможения.

1. Рекуперативное торможение, которое происходит, когда скорость двигателя выше скорости идеального холостого хода. Оно является наиболее экономичным, поскольку энергия торможения передается в электрическую сеть. Механические характеристики в этом режиме являются продолжением соответствующих характеристик двигательного режима во II квадранте. Схема двигателя при рекуперативном торможении не изменяется.

2. Динамическое торможение. Якорь двигателя отключается от сети и замыкается на сопротивление. При этом механическая энергия движущихся частей (механизма и якоря двигателя) преобразуется в электрическую, которая теряется в виде тепловой энергии в сопротивлениях якорной цепи. Механические характеристики в данном режиме торможения проходят через начало координат (на рис. 6.2 – линии с тремя засечками).

3. Торможение противовключением осуществляется двумя способами:

1) введением большого сопротивления в цепь якоря. При этом вращающий момент двигателя становится меньше, чем статический момент нагрузки Мс. Двигатель останавливается (в точке А), а затем под действием момента Мс начинает вращаться в другом направлении, развивая тормозной момент; в точке Б наступает установившийся режим. Механические характеристики являются продолжением соответствующих характеристик двигательного режима (на рис. 6.2 – линии с четырьмя засечками);

2) торможение переключением полярности обмотки якоря по ходу. Двигатель, работающий в точке 1, после переключения перейдет на реостатную характеристику в точку 2. По линии 2–3 происходит торможение (линия с пятью засечками). В точке 3 двигатель останавливается и его следует отключить от сети, чтобы избежать перехода в двигательный режим с вращением в обратном направлении.

В двигателе постоянного тока с последовательным возбужде-нием ток якоря одновременно является и током возбуждения. Магнитный поток возбуждения растет с увеличением нагрузки, вследствие чего угловая скорость снижается согласно уравнению (6.1) и механическая характеристика двигателя будет мягкой (рис. 6.3). Благодаря этому ДПТ НВ сравнительно легко и плавно преодолевает перегрузки и имеет высокий пусковой момент. Данные свойства двигателя позволяют широко применять его в приводе транспортных механизмов. Механические характеристики двигателя значительно смягчаются при введении в цепь якоря реостата (рис. 6.3, линии с одной засечкой).

Рис. 6.3. Механические характеристики двигателя постоянного тока

с последовательным возбуждением

У ДПТ ПВ нельзя осуществить режим рекуперативного торможения, поскольку в нем отсутствует скорость идеального холостого хода.

Динамическое торможение может осуществляться по схеме с самовозбуждением и с независимым возбуждением. В первом случае якорь и обмотка возбуждения отключаются от сети и замыкаются на реостат. Чтобы избежать размагничивания машины, необходимо переключить обмотку возбуждения (или якорь) таким образом, чтобы направление тока в обмотке возбуждения не изменилось. В этом случае машина самовозбуждается при данном сопротивлении цепи якоря лишь при определенном значении угловой скорости; возбудив-шись, она создает тормозной момент. Механические характеристики нелинейны (на рис. 6.3 – кривые с четырьмя засечками).

Механические характеристики двигателя в режиме динамического торможения с независимым возбуждением аналогичны соответствующим характеристикам двигателя с независимым возбуждением (на рис. 6.3 – линии с двумя засечками). Такой способ торможения нашел широкое применение, а первый способ используют редко, в основном как аварийный, например, при исчезновении напря-жения сети.

Торможение противовключением осуществляется, как у ДПТ НВ, двумя способами:

1) включением в цепь якоря большого сопротивления;

2) изменением полярности обмотки якоря, оставив направление тока в обмотке возбуждения без изменения.

При первом способе механическая характеристика будет продолжением характеристики, соответствующей двигательному режиму (на рис. 6.3 – линия с тремя засечками). При втором способе торможение осуществляется по линии 12–3.

Регулирование скорости электроприводов постоянного тока. Скорость ДПТ НВ можно регулировать:

1) путем изменения сопротивления в цепи якоря;

2) изменением потока возбуждения;

3) изменением напряжения, подводимого к якорю.

Регулирование по первому способу имеет существенно недостатки:

– уменьшается жесткость механических характеристик при снижении угловой скорости, а потери мощности в главной цепи воз-растают;

– диапазон регулирования ограничен, особенно при малых нагрузках;

– невелики плавность и точность регулирования.

По этим причинам такой способ регулирования в приводе постоянного тока используется редко.

По второму способу можно регулировать магнитный поток толь-ко в сторону уменьшения (так как в номинальном режиме магнитная цепь двигателя насыщена), что соответствует увеличению скорости выше номинальной. Возможный диапазон регулирования скорости при этом не превышает 2 для двигателя нормального исполнения. Верхний предел скорости ограничивается механической прочностью элементов якоря двигателя – бандажей обмотки якоря, коллектора.

Основным способом регулирования скорости ДПТ НВ является способ, основанный на изменении подводимого к якорю напряжения, которое осуществляется с помощью специального регулируемого преобразователя. В качестве индивидуальных источников питания используют в основном тиристорные преобразователи. Жесткость механических характеристик привода по системе «преобразователь – ДПТ НВ» практически постоянна. Механические характеристики представляют собой семейство параллельных друг другу прямых. Диапазон, плавность, точность регулирования здесь выше, чем при других способах регулирования. Поэтому данная система привода применяется для механизмов, требующих глубокого и плав-ного регулирования скорости.

Расчет добавочных резисторов в цепи якоря ДПТ НВ. Если известна естественная электромеханическая или механическая характеристика 1 двигателя (рис. 6.4) и его паспортные данные, то расчет сопротивления Rд, при включении которого в цепь якоря желаемая искусственная характеристика 2 пройдет через точку А с заданными координатами ωи, Iи или ωи, Ми, можно выполнить следующими наиболее распространенными методами.

Рис. 6.4. Характеристики ДПТ НВ для расчета величины

Метод пропорций. Запишем отношение перепадов скорости при токе Iи или моменте Ми на естественной Δωе и желаемой искусственной Δωи характеристиках:

Тогда искомая величина

Метод отрезков не требует знания значения собственного сопротивления двигателя Rя (более того, его значение можно определить по известной естественной характеристике).

Запишем выражение для скорости двигателя на заданной искусственной характеристике (см. рис. 6.4) при номинальных токе Iн, моменте Мн, магнитном потоке Фн и напряжении Uн:

Здесь Rн = Uн / Iн – так называемое номинальное сопротивление, являющееся базовой величиной при расчетах, Ом.

отражает важное свойство ДПТ НВ: относительный перепад скорости δ = Δω / ω равен относительному активному сопротивлению цепи якоря R / Rн.

Таким образом, для нахождения Rд необходимо сначала по характеристикам определить длины отрезков bс и аd при номинальном токе или моменте и рассчитать номинальное сопротивление Rн = Uн / Iн.

Расчет добавочных резисторов можно выполнить также по следующим формулам для заданного допустимого тока Iдоп, который определяется величиной допустимого момента Мдоп или условиями пуска, реверса и торможения.

Читайте также:  Прога для восстановления удаленных данных

Сопротивление резистора Rд1 при пуске (Е = 0)

Сопротивление резистора Rд2 при динамическом торможении

Сопротивление резистора Rд3 при реверсе или торможении противовключением

Пример. ДПТ НВ типа ПБСТ-53 имеет следующие паспортные данные: Рн = 4,8 кВт; nн = 1500 об/мин; Uн = 220 В; Iн = 24,2 А; Rя = 0,38 Ом; Iв.н = 0,8 А. Требуется определить:

1) сопротивление резистора, включение которого в цепь якоря двигателя обеспечит прохождение искусственной механической характеристики через точку с координатами ωи = 90 рад/с, Мн = 25 Нм;

2) сопротивления резисторов, включение которых ограничит ток при пуске и торможении противовключением до уровня Iдоп = 3 Iн.

Электродвигатели постоянного тока могут иметь независимое, параллельное, последовательное или смешанное возбуждение (рис. 6.1).

Рис. 6.1. Схемы электродвигателей постоянного тока независимого (а),

параллельного (б), последовательного (в) и смешанного (г) возбуждения

(верхняя часть схемы «в» принадлежит схеме «а»)

В электродвигателе параллельного возбуждения обмотка возбуждения присоединяется параллельно к зажимам якоря. Но ток, протекающий по этой обмотке, в отличие от тока якоря не зависит от нагрузки и определяется приложенным к якорю напряжением и общим сопротивлением цепи возбуждения. По этой причине электродвигатель параллельного возбуждения называют также электродвигателем с независимым возбуждением.

Вращающий момент М двигателя постоянного тока и его ЭДС Е определяются по формулам

где к – конструктивный коэффициент двигателя;

Ф – магнитный поток, Вб;

ω – угловая скорость, рад/с.

Уравнения электромеханической ω = ƒ (Iя) и механической ω = ƒ (М) характеристик имеют вид

Угловая скорость идеального холостого хода (при Iя = 0 или М = 0)

На рис. 6.2 представлены механические характеристики двигателя постоянного тока с независимым возбуждением (ДПТ НВ) во всех режимах работы. Характерными точками характеристик в двигательном режиме являются: точка идеального холостого хода (ω, М = 0); точка номинального режима (ωн, Мн); точка короткого замыкания (ω = 0, М = Мк).

Жесткость механической характеристики определяется потоком возбуждения и сопротивлением якорной цепи:

Рис. 6.2. Совмещенные механические характеристики двигателя постоянного тока с независимым возбуждением

Наибольшее значение модуля жесткости соответствует естественной механической характеристике, так как ток возбуждения равен номинальному и регулировочное сопротивление Rр = 0. По мере увеличения сопротивления реостата Rр наклон механической характеристики возрастает, а угловая скорость снижается. При заданном значении сопротивления Rр и номинальном моменте Мн угловая скорость двигателя

Для расчета механических характеристик необходимо знать сопротивление якоря двигателя Rя, которое задается в каталогах. При отсутствии заводских данных величину Rя находят ориентировочно по формуле

Так как механические характеристики ДПТ НВ прямолинейны, для их построения достаточно иметь две точки:

Для ДПТ НВ возможны следующие три режима электрического торможения.

1. Рекуперативное торможение, которое происходит, когда скорость двигателя выше скорости идеального холостого хода. Оно является наиболее экономичным, поскольку энергия торможения передается в электрическую сеть. Механические характеристики в этом режиме являются продолжением соответствующих характеристик двигательного режима во II квадранте. Схема двигателя при рекуперативном торможении не изменяется.

2. Динамическое торможение. Якорь двигателя отключается от сети и замыкается на сопротивление. При этом механическая энергия движущихся частей (механизма и якоря двигателя) преобразуется в электрическую, которая теряется в виде тепловой энергии в сопротивлениях якорной цепи. Механические характеристики в данном режиме торможения проходят через начало координат (на рис. 6.2 – линии с тремя засечками).

3. Торможение противовключением осуществляется двумя способами:

1) введением большого сопротивления в цепь якоря. При этом вращающий момент двигателя становится меньше, чем статический момент нагрузки Мс. Двигатель останавливается (в точке А), а затем под действием момента Мс начинает вращаться в другом направлении, развивая тормозной момент; в точке Б наступает установившийся режим. Механические характеристики являются продолжением соответствующих характеристик двигательного режима (на рис. 6.2 – линии с четырьмя засечками);

2) торможение переключением полярности обмотки якоря по ходу. Двигатель, работающий в точке 1, после переключения перейдет на реостатную характеристику в точку 2. По линии 2–3 происходит торможение (линия с пятью засечками). В точке 3 двигатель останавливается и его следует отключить от сети, чтобы избежать перехода в двигательный режим с вращением в обратном направлении.

В двигателе постоянного тока с последовательным возбужде-нием ток якоря одновременно является и током возбуждения. Магнитный поток возбуждения растет с увеличением нагрузки, вследствие чего угловая скорость снижается согласно уравнению (6.1) и механическая характеристика двигателя будет мягкой (рис. 6.3). Благодаря этому ДПТ НВ сравнительно легко и плавно преодолевает перегрузки и имеет высокий пусковой момент. Данные свойства двигателя позволяют широко применять его в приводе транспортных механизмов. Механические характеристики двигателя значительно смягчаются при введении в цепь якоря реостата (рис. 6.3, линии с одной засечкой).

Рис. 6.3. Механические характеристики двигателя постоянного тока

с последовательным возбуждением

У ДПТ ПВ нельзя осуществить режим рекуперативного торможения, поскольку в нем отсутствует скорость идеального холостого хода.

Динамическое торможение может осуществляться по схеме с самовозбуждением и с независимым возбуждением. В первом случае якорь и обмотка возбуждения отключаются от сети и замыкаются на реостат. Чтобы избежать размагничивания машины, необходимо переключить обмотку возбуждения (или якорь) таким образом, чтобы направление тока в обмотке возбуждения не изменилось. В этом случае машина самовозбуждается при данном сопротивлении цепи якоря лишь при определенном значении угловой скорости; возбудив-шись, она создает тормозной момент. Механические характеристики нелинейны (на рис. 6.3 – кривые с четырьмя засечками).

Механические характеристики двигателя в режиме динамического торможения с независимым возбуждением аналогичны соответствующим характеристикам двигателя с независимым возбуждением (на рис. 6.3 – линии с двумя засечками). Такой способ торможения нашел широкое применение, а первый способ используют редко, в основном как аварийный, например, при исчезновении напря-жения сети.

Торможение противовключением осуществляется, как у ДПТ НВ, двумя способами:

1) включением в цепь якоря большого сопротивления;

2) изменением полярности обмотки якоря, оставив направление тока в обмотке возбуждения без изменения.

При первом способе механическая характеристика будет продолжением характеристики, соответствующей двигательному режиму (на рис. 6.3 – линия с тремя засечками). При втором способе торможение осуществляется по линии 12–3.

Регулирование скорости электроприводов постоянного тока. Скорость ДПТ НВ можно регулировать:

1) путем изменения сопротивления в цепи якоря;

2) изменением потока возбуждения;

3) изменением напряжения, подводимого к якорю.

Регулирование по первому способу имеет существенно недостатки:

– уменьшается жесткость механических характеристик при снижении угловой скорости, а потери мощности в главной цепи воз-растают;

– диапазон регулирования ограничен, особенно при малых нагрузках;

– невелики плавность и точность регулирования.

По этим причинам такой способ регулирования в приводе постоянного тока используется редко.

По второму способу можно регулировать магнитный поток толь-ко в сторону уменьшения (так как в номинальном режиме магнитная цепь двигателя насыщена), что соответствует увеличению скорости выше номинальной. Возможный диапазон регулирования скорости при этом не превышает 2 для двигателя нормального исполнения. Верхний предел скорости ограничивается механической прочностью элементов якоря двигателя – бандажей обмотки якоря, коллектора.

Основным способом регулирования скорости ДПТ НВ является способ, основанный на изменении подводимого к якорю напряжения, которое осуществляется с помощью специального регулируемого преобразователя. В качестве индивидуальных источников питания используют в основном тиристорные преобразователи. Жесткость механических характеристик привода по системе «преобразователь – ДПТ НВ» практически постоянна. Механические характеристики представляют собой семейство параллельных друг другу прямых. Диапазон, плавность, точность регулирования здесь выше, чем при других способах регулирования. Поэтому данная система привода применяется для механизмов, требующих глубокого и плав-ного регулирования скорости.

Расчет добавочных резисторов в цепи якоря ДПТ НВ. Если известна естественная электромеханическая или механическая характеристика 1 двигателя (рис. 6.4) и его паспортные данные, то расчет сопротивления Rд, при включении которого в цепь якоря желаемая искусственная характеристика 2 пройдет через точку А с заданными координатами ωи, Iи или ωи, Ми, можно выполнить следующими наиболее распространенными методами.

Рис. 6.4. Характеристики ДПТ НВ для расчета величины

Метод пропорций. Запишем отношение перепадов скорости при токе Iи или моменте Ми на естественной Δωе и желаемой искусственной Δωи характеристиках:

Тогда искомая величина

Метод отрезков не требует знания значения собственного сопротивления двигателя Rя (более того, его значение можно определить по известной естественной характеристике).

Читайте также:  Что означают цифры в холодильнике на регуляторе

Запишем выражение для скорости двигателя на заданной искусственной характеристике (см. рис. 6.4) при номинальных токе Iн, моменте Мн, магнитном потоке Фн и напряжении Uн:

Здесь Rн = Uн / Iн – так называемое номинальное сопротивление, являющееся базовой величиной при расчетах, Ом.

отражает важное свойство ДПТ НВ: относительный перепад скорости δ = Δω / ω равен относительному активному сопротивлению цепи якоря R / Rн.

Таким образом, для нахождения Rд необходимо сначала по характеристикам определить длины отрезков bс и аd при номинальном токе или моменте и рассчитать номинальное сопротивление Rн = Uн / Iн.

Расчет добавочных резисторов можно выполнить также по следующим формулам для заданного допустимого тока Iдоп, который определяется величиной допустимого момента Мдоп или условиями пуска, реверса и торможения.

Сопротивление резистора Rд1 при пуске (Е = 0)

Сопротивление резистора Rд2 при динамическом торможении

Сопротивление резистора Rд3 при реверсе или торможении противовключением

Пример. ДПТ НВ типа ПБСТ-53 имеет следующие паспортные данные: Рн = 4,8 кВт; nн = 1500 об/мин; Uн = 220 В; Iн = 24,2 А; Rя = 0,38 Ом; Iв.н = 0,8 А. Требуется определить:

1) сопротивление резистора, включение которого в цепь якоря двигателя обеспечит прохождение искусственной механической характеристики через точку с координатами ωи = 90 рад/с, Мн = 25 Нм;

2) сопротивления резисторов, включение которых ограничит ток при пуске и торможении противовключением до уровня Iдоп = 3 Iн.

Блог о электронике

После предыдущего поста о мотор-редукторе мне пришло несколько вопросов по регулированию двигателя постоянного тока. Так что пора написать очередной пост 🙂

Двигатель постоянного тока (ДПТ) это один из самых привычных и понятных электродвигателей, он изучается даже в школе, на физике. Он используется практически везде, где нужен малогабаритный моторчик, а также не спешит сдавать своих позиций и там, где мощность измеряется десятками киловатт. О нем и поговорим.

Конструктив и базовый принцип
Не буду тут особо распинаться, покажу картинку из википедии и укажу ряд основных узлов. Все остальное вы и так знаете и трогали своими руками.

1. Статор состоит из источника магнитного поля. Далеко не всегда это постоянный магнит, более того, постоянный магнит это скорей исключение, чем правило. Обычно все же это обмотка возбуждения. По крайней мере на всем, что больше кулака по размерам.

Работает все очень и очень просто. Обмотка якоря отталкивается от магнитного поля статора силой Ампера и совершает пол оборота, стремясь вывести эту силу на ноль и таки вывела бы если бы не коллектор, который ловко всех обламывает переключает полярность катушки и сила вновь становится максимальной. И так по кругу. Т.е. коллектор служит механическим инвертором напряжения в якоре. Запомните этот момент, он нам еще пригодится 🙂

Обычно в мелких моторчиках всего два полюса обмотки возбуждения (одна пара) и трехзубцовый якорь. Три зуба это минимум для запуска из любого положения, но чем больше зубцов тем более эффективно используется обмотка, меньше токи и более плавный момент, т.к сила является проекцией на угол, а активный участок обмотки проворачивается на меньший угол

Происходящие в двигателе процессы
Думаю многие из вас кто баловался с движками могли заметить, что у них есть ярко выраженный пусковой ток, когда мотор на старте может рвануть стрелку амперметра, например, до ампера, а после разгона ток падает до каких-нибудь 200мА.

Почему это происходит? Это работает противоэдс. Когда двигатель стоит, то ток который через него может пройти зависит только лишь от двух параметров — напряжения питания и сопротивления якорной обмотки. Так что предельный ток который может развить движок и на который следует рассчитывать схему узнать несложно. Достаточно замерить сопротивление обмотки двигателя и поделить на это значение напряжение питания. Просто по закону Ома. Это и будет максимальный ток, пусковой.

Но по мере разгона начинается забавная вещь, обмотка якоря движется поперек магнитного поля статора и в ней наводится ЭДС, как в генераторе, но направлена она встречно той, что вращает двигатель. И в результате, ток через якорь резко снижается, тем больше, чем выше скорость.

А если движок дополнительно еще подкручивать по ходу, то противоэдс будет выше питания и движок начнет вкачивать энергию в систему, став генератором.

Немного формул
Не буду грузить никого выводами, их найдете сами если захотите. Чтобы было поменьше матана рекомендую найти учебник по электроприводу для средних учебных заведений и годом выпуска подревней. От 50х-60х годов самое то 🙂 Там и картинки винтажные и расписано для вчерашнего выпускника сельской семилетки. Много букв и никакого грузилова, все четко и по делу.

Самая главная формула коллекторного двигателя постоянного тока:

  • U — напряжение подаваемое на якорь
  • Rя — сопротивление якорной цепи. Обычно за этот символ считают только сопротивление обмотки, хотя можно снаружи навесить резистор какой и он к ней приплюсуется. Тогда пишут как (Rя+Rд)
  • Iя — ток в якорной цепи. Тот самый который замеряется амперметром при попытке измерять потребление движка 🙂
  • Е — это противоэдс или ЭДС генератора, в генераторном режиме. Она зависит от конструкции двигателя, оборотов и описывается вот такой вот простой формулой
  • Ce — одна из конструктивных констант. Они зависят от конструкции двигателя, числа полюсов, количества витков, толщин зазоров между якорем и статором. Нам она не особо нужна, при желании ее можно вычислить экспериментально. Главное, что она константа и на форму кривых не влияет 🙂
  • Ф — поток возбуждения. Т.е. сила магнитного поля статора. В мелких моторчиках, где оно задается постоянным магнитом это тоже константа. Но бывает под возбуждение выведена отдельная обмотка и тогда мы можем ее менять.
  • n — обороты якоря.

Ну и зависимость момента от тока и потока:

См — конструктивная констатнта.

Вот тут стоит обратить внимание, что зависимость момента от тока совершенно прямая. Т.е. просто замеряя ток, при неизменном потоке возбуждения, мы можем совершенно точно узнать величину момента. Это может быть важно, например, чтобы не сломать привод, когда двигло может развить такое усилие, что легко поломает то, что оно там вращает. Особенно с редуктором.

Ну и из этого же следует, что момент у машины постоянного тока зависит только от способности источника снабжать его током. Так что идеальный нерушимый сверхпроводящий движок вам на раз лом в узел завяжет, пусть даже он сам с ноготок будет. Только энергию подавай.

А теперь смешаем все это в кучу и получим зависимость оборотов от момента — механическую характеристику двигателя.

Если ее построить, то будет нечто следующее:

n — это обороты идеального холостого хода сферического двигателя в вакууме. Т.е. когда наш движок ну ваще халявит, момент равен нулю. Ток потребления тоже, естественно, ноль. Т.к. противоэдс равна напряжению. Чисто теоретический вариант. А вторая точка строится уже с каким-либо моментом на валу. Получается прямая зависимость оборотов от момента. А наклон характеристики определяется сопротивлением якорной цепи. Если никаких добавочных резисторов там нет, то это зовут естественной характеристикой.

Обороты идеального холостого хода зависят от напряжения и потока. Больше ни от чего. А если поток константа (постоянный магнит), то только от напряжения. Снижая напряжение вся наша характеристика параллельно смещается вниз. Уменьшили напряжение в два раза — скорость упала в два раза.

Если есть возможность менять поток возбуждения, то можно поднимать скорость выше номинальной. Тут зависимость обратная. Ослабляем поток — двигатель разгоняется, но либо падает момент, либо ему надо жрать больше тока.

Иной двигатель со снятием возбуждения может и в разнос пойти. Помнится сдавал я затянувшийся курсач по электроприводу, уже хрен знает спустя сколько времени после сессии. Вломы мне его делать было, ага 🙂 Ну и сидел в лаборатории, ждал препода. А там какие то балбесы, на курс ниже, лабу делали. Крутили движок вхолостую, а возбуждение к стенду приверчено было на соплях и слетело с клеммы. Движок в разнос пошел. У нас в лаборатории ЭПА ЮУРГУ все серьезно было, машины стояли нешуточные, по десятку киловатт и под сотню другую кг каждый. Все на суровом напряжении в 380 вольт.
В общем, когда эта дура взревела как монстр и стала рваться с креплений, я только и успел крикнуть, что все нахер от машины, вырубай к черту. Не успели, двигло сорвало с креплений, обмотка повылетала с пазов и движку пришел кирдык. Ладно никого не покалечило.
Впрочем, лабы привода это то еще развлечение было. У нас там и горело и взрывалось. Там я приобрел замечательные навыки чинить что угодно, чем угодно в сжатые сроки. В среднем, каждый успел по разу убить стенд наглухо, а лаба часто начиналась с починки паяльника, которым чинили осциллограф с помощью которого реанимировали убитый стенд.

Читайте также:  Удаление программы через cmd

Добавляя резисторы в якорную цепь мы можем увеличить наклон, т.е. чем больше грузим тем больше падает скорость.

Метод плох тем, что резисторы в цепи якоря должны быть расчитаны на ток двигателя, т.е. быть мощными и будут греться зря. Ну и момент резко падает, что плохо.

Есть еще двигатели не независимого, а последовательного возбуждения. Это когда обмотка статора включена последовательно якорю. Не каждый двигатель так можно включить, обмотка возбуждения должна выдерживать ток якоря. Но у них возникает одно интересное свойство. При пуске возникает большой пусковой ток и этот пусковой ток является же током возбуждения, обеспечивая огромный пусковой момент. Механическая характеристика напоминает гиперболу с максимумом в районе нулевых оборотов.

А дальше, по мере разгона, момент падает, а обороты наоборот растут. И если нагрузку убрать с вала, то движок сразу же уходит в разнос. Такие движки ставят на тягловый привод в основном. По крайней мере ставили раньше, до развития силовой электроники. С места эта хрень рвет так, что все стритсракеры нервно закуривают.

Режимы работы двигателя постоянного тока
Направление вращения движка зависит от направления тока якоря или направления потока возбуждения. Так что если взять коллекторный двигатель и подключить обмотку возбуждения параллельно якорю, то он будет прекрасно вращаться и на переменном токе (универсальные двигатели, их в кухонную технику часто ставят). Т.к. ток будет одновременно меняться и в якоре и в возбуждении. Момент правда будет пульсирующим, но это мелочи. А для реверса там надо будет поменять полярность включения якоря или возбуждения.

Если нарисовать механическую характеристику в четырех квадрантах, то у нас будет нечто похожее на это:

Вот, например, характеристика 1 на I участке у нас машина работает как двигатель. Нагрузка растет и в определенный момент двигатель останавливается и начинает вращаться в обратную сторону, т.е. нагрузка обращает его вспять. Это тормозной режим, противовключение. Режим очень тяжелый, двигло греется просто зверски, но для торможения очень эффективный. Если же момент на валу сменит направление и пойдет вращать навстречу движку, то мотор сразу же выйдет на генерацию (IV участок).

Характеристика 2 это то же самое, только с обратной полярностью питающего напряжения двигателя.

А характеристика 3 это динамическое торможение. Оно же реостатное. Т.е. когда мы берем и просто коротим наш двигатель на резистор или сам на себя. Можете сами проверить, возьмите любой моторчик и покрутите его, а потом закоротите ему якорь и покрутите снова. На валу будет ощутимое усилие, тем больше, чем качественнее движок.

Кстати, драйвера двигателей вроде L293 или L297 имеют возможность включить реостатное торможение, подачей обоих ключей вверх или вниз. При этом якорь коротится через драйвер на шину земли или питания.

Бесколлекторные двигатели постоянного тока
Коллекторный движок он очень хорош. Он чертовски легко и гибко регулируется. Можно повышать обороты, понижать, механическая характеристика жесткая, момент он держит на ура. Зависимость прямая. Ну сказка, а не мотор. Если бы не одна ложка говна во всей этой вкусняшке — коллектор.

Это сложный, дорогой и очень ненадежный узел. Он искрит, создает помехи, забивается проводящей пылью от щеток. А при большой нагрузке может полыхнуть, образовав круговой огонь и тогда все, капец движку. Закоротит все дугой наглухо.

Но что такое коллектор вообще? Нафига он нужен? Выше я говорил, что коллектор это механический инвертор. Его задача переключать напряжение якоря туда сюда, подставляя обмотку под поток.

А на дворе то уже 21 век и дешевые и мощные полупроводники сейчас на каждом шагу. Так зачем нам нужен механический инвертор если мы можем сделать его электронным? Правильно, незачем! Так что берем и заменяем коллектор силовыми ключами, а еще добавляем датчики положения ротора, чтобы знать в какой момент переключать обмотки.

А для пущего удобства выворачиваем двигатель наизнанку — гораздо проще вращать магнит или простенькую обмотку возбуждения, чем якорь со всей этой тряхомудией на борту. В качестве ротора тут выступает либо мощный постоянный магнит, либо обмотка питаемая с контактных колец. Что хоть и смахивает на коллектор, но не в пример надежней его.

И получаем что? Правильно! Бесщеточный двигатель постоянного тока aka BLDC. Все те же няшные и удобные характеристики ДПТ, но без этого мерзкого коллектора. И не надо путать BLDC с синхронными двигателями. Это совсем разные машины и разным принципом действия и управления, хотя конструктивно они ОЧЕНЬ схожи и тот же синхронник вполне может работать как BLDC, добавить ему только датчиков да систему управления. Но это уже совсем другая история.

100 thoughts on “Двигатель постоянного тока. Характеристики и регулирование”

Я очень ждал статей про двигатели. Специалист по электроприводу научил нас как работать с AVR, а про моторчики нифига не написал. Еще будут статьи на эту тему?

Мне порвала шаблон обратная зависимость между магнитным потоком возбуждения и скоростью вращения. По формуле я вижу, что это так, но понять не могу. Особенно удивил уход вразнос при отключении обмотки возбуждения. Если нет магнитного потока статора, то от чего «отталкивается» ротор? Как двигатель может вообще работать в таком режиме?

Отталкивается от остаточного возбуждения. Намагниченности полюсов. Но ты обрати внимание, что момент там тоже уходит в ноль. Так что либо отталкиваться бешеным током, либо снижать момент до нуля.

Да, про момент я заметил. Понятно, что разгон будет происходить только без нагрузки и только, если источник питания способен выдать нужный ток.

Статьи может быть будут еще, не скажу. Я, на самом деле, за 7 лет изрядно эту тему подзабыл за неиспользованием. Особенно касаемо всякого продвинутого регулирования и динамики привода. Так что не такой я уж специалист по приводу 🙂

Можно и без продвинутого регулирования для начала. Меня совсем базовые вещи интересуют. Типа, какие бывают способы управления и, соответственно, какие драйверы их реализуют, чем отличаются, плюсы, минусы, подводные камни. Для коллекторных и бесколлекторных двигателей постоянного тока. На что следует обратить внимание при разработке схем с электродвигателями, чтобы не сжечь все нафиг. В общем, такая статья в раздел «Начинающим». Но и более емкие статьи я бы с удовольствием прочитал.

Ну базовые вещи я уже описал 🙂 А дальше додумываешь сам. Напряжение можно рулить ШИМом. Можно обратную связь по току-моменту замутить. Обращаться с ними также как с любой индуктивностью, о чем я тоже уже писал. Не расписывал только H-мосты самодельные. Но тут тема такая, на всех не угодишь, слишком они разные бывают.

Он используется практически везде, где нужен малогабаритный моторчик

То-то все авиамодели, квадкоптеры и прочая летучая нечисть — на бесколлекторниках, кроме совсем позорного Китая за $100.

Я БУДУ ЧИТАТЬ ДО КОНЦА, ПРЕЖДЕ ЧЕМ КОММЕНТИРОВАТЬ. Я БУДУ ЧИТАТЬ ДО КОНЦА, ПРЕЖДЕ ЧЕМ КОММЕНТИРОВАТЬ. Я БУДУ ЧИТАТЬ ДО КОНЦА, ПРЕЖДЕ ЧЕМ КОММЕНТИРОВАТЬ. Я БУДУ ЧИТАТЬ ДО КОНЦА, ПРЕЖДЕ ЧЕМ КОММЕНТИРОВАТЬ. Я БУДУ ЧИТАТЬ ДО КОНЦА, ПРЕЖДЕ ЧЕМ КОММЕНТИРОВАТЬ.

Модели — не игрушки. Совсем другие требования, и другие цены.
А в дешевых игрушках, — как правило, дешевые коллекторные движки с проволочными щетками. Да и в самых дешевых моделях вертолета с соосными винтами (по сути, те же игрушки) — тоже коллекторные.

Имеется двигатель постоянного тока мощностью 60Вт, напряжение питания 48В. Как его можно переделать чтобы питать от 12В не потеряв в мощности?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector