Программирование pic16f628a для начинающих

Недавно решил собрать устройство на микроконтроллере фирмы PIC, но по не известным причинам у меня отказал программатор Extra-PIC. Скорее всего, сгорела микросхема МАХ232, такое уже было один раз. Недолго думая, нашел в Интернете простенькую схему программатора, заточенного под IC-Prog и работающую через СОМ порт.

Плату необходимо отзеркалить при печати. Иначе панельки придется паять со стороны дорожек.

Далее просверлил отверстия и начал паять детали. Самой большой проблемой были стабилитроны. Стабилитроны стал искать на плате от ЭЛТ-монитора. Подписаны на плате они как ZD (Zener Diode). Естественно маркировка у них непонятная и неизвестно где и как искать. Чтобы определить, на сколько вольт стабилитрон можно собрать простую схемку.

Вольтметр достаточно точно покажет, на сколько вольт стабилитрон. Таким нехитрым способом нашел приблизительные по номиналу стабилитроны. Вместо 5,6В установил 6,2В, вместо 12,6В поставил 2 стабилитрона последовательно 6,2+6,2=12,4В.

Транзистор можно поставить КТ315. У себя поставил С945. Диоды тоже любые, я выпаял все 3 шт. из диодного моста той-же платы от монитора. Номинал конденсаторов также не критичен, но их поставил по номиналу.

Немного про красные пятачкИ у панелек. Эти ноги вообще не паяются у панелек. Полностью готовый девайс выглядит так:

Панельки решил не все паять, т.к. мне нужно было прошить только PIC16F628А. После того как спаял нужно настроить программу. Прошивать мы будем IC-Prog. Скачиваем программу, распаковываем из архива, все файлы должны быть обязательно в одной папке!

1) Если вы пользуетесь Windows NT, 2000 или XP, то правой кнопкой щёлкните на файле icprog.exe. "Свойства" >> вкладка "Совместимость" >> Установите "галочку" на "Запустить программу в режиме совместимости с:" >>
выберите "Windows 2000".

2) Запускаем программу. Если она уже на русском – ничего не нужно, переходите к шагу 3 .

Если программа на английском, то жмите "Settings" >> "Options" >> вкладку "Language" >> установите язык "Russian" и нажмите "Ok".
Согласитесь с утверждением "You need to restart IC-Prog now" (нажмите "Ok"). Оболочка программатора перезапустится.

3) Теперь нужно настроить программатор. Кликайте "Настройки" >> "Программатор". Проверьте установки, выберите используемый вами COM-порт, нажмите "Ok".

Для очень "быстрых" компьютеров возможно потребуется увеличить параметр "Задержка Ввода/Вывода". Увеличение этого параметра увеличивает надёжность программирования, однако, увеличивается и время, затрачиваемое на программирование микросхемы.

4) Только для пользователей Windows NT, 2000 или XP. Нажмите "Настройки" >> "Опции" >> выберите вкладку "Общие" >> установите "галочку" на пункте "Вкл. NT/2000/XP драйвер" >> Нажмите "Ok" >> если драйвер до этого не был устновлен на вашей системе, в появившемся окне "Confirm" нажмите "Ok" . Драйвер установится, и оболочка программатора перезапустится.

5) Нажмите снова "Настройки" >> "Опции" >> выберите вкладку "I2C" >> установите "галочки" на пунктах: "Включить MCLR как VCC" и "Включить запись блоками". Нажмите "Ok".

6) "Настройки" >> "Опции" >> выберите вкладку "Программирование" >> снимите "галочку" с пункта: "Проверка после программирования" и установите "галочку" на пункте "Проверка при программировании". Нажмите "Ok".

Готово, теперь программа полностью готова к работе с программатором. Подключаем наш программатор к СОМ порту, выбираем наш микроконтроллер в программе, открываем прошивку и программируем любые МК серии PIC. Удачи всем в работе с программатором и контроллерами! Автор: [)еНиС

Обсудить статью ПРОГРАММИРОВАНИЕ PIC КОНТРОЛЛЕРОВ

На современном рынке есть ряд семейств и серий микроконтроллеров от разных производителей, среди них можно выделить AVR, STM32 и PIC. Каждое из семейств нашло свою сферу применения. В этой статье я расскажу начинающим о микроконтроллерах PIC, а именно, что это такое и что нужно знать для начала работы с ними.

Что такое PIC

PIC – это название серии микроконтроллеров, которые производятся компанией Microchip Technology Inc (США). Название PIC происходит от Peripheral Interface Controller.

Микроконтроллеры PIC имеют RISC-архитектуру. RISC – сокращённый набор команд, используется также в процессорах для мобильных устройств. Есть целый ряд примеров её использования: ARM, Atmel AVR и другие.

Компания Microchip в 2016 году купила Atmel – производителя контроллеров AVR. Поэтому на официальном сайте представлены микроконтроллеры семейства и PIC и AVR.

Семейства

Среди 8-битных микроконтроллеров PIC она состоит из 3-х семейств, которые отличаются архитектурой (разрядностью и набором команд).

Baseline (PIC10F2xx, PIC12F5xx, PIC16F5x, PIC16F5xx) ;

Mid-range (PIC10F3xx, PIC12F6xx, PIC12F7xx, PIC16F6xx, PIC16F7xx, PIC16F8xx, PIC16F9xx) ;

Enhanced Mid-range (PIC12F1xxx, PIC16F1xxx) ;

High-end или PIC18 (18Fxxxx, 18FxxJxx and 18FxxKxx).

Характеристики, которых приведены в таблице ниже.

Кроме 8 битных микроконтроллеров компания Microchip производит 16-битные:

DsPIC30/33F для обработки сигналов.

Представители 16-битного семейства работают со скоростью от 16 до 100 MIPS (выполнено миллионов инструкций в секунду). Стоит отметить и особенности:

машинный цикл – 2 такта;

разрядность АЦП – 16 бит;

поддерживают ряд протоколов связи (UART, IrDA, SPI, I2S™, I2C, USB, CAN, LIN and SENT), ШИМ и прочее.

Также есть семейство 32 битных микроконтроллеров – PIC32MX, основные особенности:

работают на частоте до 120 мГц;

выполняют до 150 MIPS;

АЦП: 10-бит, 1 Msps (скорость квантования), до 48 каналов.

С какого PIC начать?

Новичкам стоит начать осваивать микроконтроллеры PIC с 8-битной линейки. Вообще, производитель заявляет о том, что особенностью всего семейства является лёгкая переносимость программ с одного семейства на другое и совпадения цоколевки ряда моделей.

Одним из популярнейших в среде радиолюбителей микроконтроллеров является PIC16f628A. Его технические характеристики такие:

Есть встроенный тактовый генератор. Вы можете настроить для работы с частотой 4 или 8 МГц;

18 пинов, из них 16 – ввод/вывод, а 2 – питание;

Для работы на частотах до 20 МГц можно подключить кварцевый резонатор, но в этом случае на ввод/вывод останется не 16, а 14 ног;

В маркировке есть буква F, это значит, что используется FLASH-память, объёмом в 2048 слов;

14-битные инструкции, 35 штук;

4 аналоговых входа;

На входах PORTB есть подтягивающие резисторы;

Два 8-битных таймера и один 16-битный;

Машинный цикл – 4 такта кварцевого резонатора или внутреннего генератора);

128 байт EEPROM;

USART – последовательный порт;

внутренний источник опорного напряжения;

питается от 3.3 до 5 В.

Причинами популярности является низкая цена и возможность тактирования от внутреннего генератора.

Какая цоколевка у 16f628 изображено ниже:

Блочная внутренняя схема этого микроконтроллера изображена ниже.

На что следует обратить внимание на схеме в первую очередь?

У этого микроконтроллера есть два порта PORTA и PORTB. Каждый пин, каждого из них может использоваться как вход и выход, а также для подключения периферии или задействования других модулей микроконтроллера.

Рассмотрим эту часть схемы крупно.

Например, порты RB0-RB3 – могут выступать в роли аналоговых. К RA6, RA7 в случае необходимости подключается источник тактирования (кварцевый резонатор). Сами же выводы микроконтроллера настраиваются в режим входа/выхода с помощью регистра TRIS.

Для этого есть команды типа:

TRISA = 0; // Все выводы порта А устанавливаются как выходы
TRISB = 0xff; // Все выводы порта B назначаются как входы
TRISA0 = 1; // Так назначается отдельный пин как вход (1) или выход (0)
TRISA5 = 1 ; // здесь 5 вывод порта А – назначен входом

Вообще режимы работы, включение WDT (сторожевого таймера) выбор источника тактирования микроконтроллера и прочее настраивается с помощью регистров специального назначения — SFR, а память и данные хранятся в GFR – простыми словами это статическое ОЗУ.

В официальном Datasheet, на страницах 18-21 вы найдете 4 банка памяти регистров специального назначения SFR и регистров общего назначения GFR. Знание регистров важно, поэтому распечатайте и выучите указанные страницы из Datasheet .

Для удобства ниже приведены эти таблицы в виде картинок (нумерация регистров, как и всё в цифровой электронике начинается с 0, поэтому номер четвертого – 3).

Как подключить и на каком языке программировать?

Чтобы запустить этот микроконтроллер достаточно подать плюс на Vdd и минус на Vss. Если нужен кварцевый резонатор, то он подключается к выводам 16 и 15 (OSC1 и OSC2) микроконтроллера PIC16f628, для других контроллеров с большим или меньшим числом выводов – смотрите в datasheet. Но этот момент нужно указывать при программировании и прошивке.

Кстати о переносимости и совпадении цоколевки – на 16f84A – она аналогична, и на многих других.

Фрагмент схемы с подключенным к pic16f628a внешним резонатором:

Есть два основных языка для программирования микроконтроллеров PIC – это assembler и C, есть и другие, например PICBasic и т.д. Еще можно выделить упрощенный язык программирования JAL (just another language).

Для примера ниже приведена программа для «мигания светодиодом» — своего рода «Hello World» для микроконтроллера PIC на языке C.

В 1 строке подключается библиотека микроконтроллеров PIC, далее подключается библиотека программы задержки.

В функции main(void) в начале устанавливаются начальные параметры, подобно тому как мы это делали в функции Void setup () – в статьях об ардуино. Далее в строках 11-16 объявляется бесконечный цикл while(1), в ходе которого и выполняется программа «мигания светодиодом».

В примере состояние порта постоянно инвертируется, т.е. если он был в «0», то перейдет в «1» и наоборот. На C для PIC есть следующие команды управления команды:

PORTA = 0; // переводит все пины порта А в низкий уровень (лог. 0)
PORTB = 0xff; // переводит все пины порта B в высокий уровень (лог. 1)
RB5 = 1; // На пятом выводе порта B высокий уровень

А так выглядит та же программа, но уже на языке JAL, я перевел на русский язык комментарии от разработчиков встроенных примеров в JALedit (среда разработки).

Возникает соблазн выбрать JAL, и вам он может показаться проще. Безусловно на нём можно реализовать любые проекты, но с точки зрения пользы для вас как для специалиста – это бесполезный язык. Значительно больших результатов вы добьетесь, изучая синтаксис и принципы программирования на языке C (большая часть популярных сейчас языков C-подобны) или на Assembler – это низкоуровневый язык, который заставит вас понимать принцип работы устройства и что происходит в программе в каждый конкретный момент времени.

В чем работать

Если сказать совсем обобщенно для работы с любыми микроконтроллерами нужно:

1. Текстовый редактор.

3. Программа для загрузки прошивки в микроконтроллер.

И я даже читал старые учебники, где автор, работая из-под DOS писал код, компилировал и прошивал его разными средствами. Сейчас же под все популярные операционные системы есть среды для разработки, как узкоспециализированные (для конкретного семейства микроконтроллеров или семейств от одного производителя) так и универсальные (либо содержат все необходимые инструменты, либо они подключаются в виде плагинов).

Например, в цикле статей об Arduino мы рассматривали среду Arduino IDE в ней же мы и код писали и с её помощью «заливали» прошивку в «камень». Для микроконтроллеров PIC есть такие программы, как:

MPASM — используется для разработки на языке Assembler от фирмы Microchip ;

MPLAB — также IDE от Microchip для PIC-контроллеров. Состоит из множества блоков для тестирования, проверки, работы с кодом и компиляции программ и загрузки в микроконтроллер. Также есть версия MPLAB X IDE – отличается большим функционалом и построена на базе платформы NetBeans ;

MikroC — универсальная среда (не только для ПИКов) для разработки. Как видно из названия «заточена» под программирование на C, а также есть такие программы как MikroBasic и MikroPascal, для соответствующих языков ;

JALedit — подходит для языка JAL, о котором мы упоминали выше ;

И ряд других менее известных.

Как прошивать микроконтроллер?

Для PIC-микронотроллеров есть ряд программаторов. Официальным считается PICkit. Их 4 версии. Но можно прошивать и универсальными, например, TL866 (он поддерживает почти всё, что может понадобится начинающему радиолюбителю, при этом очень дешевый).

Также в сети есть ряд различных схем программаторов для ПИКов, как для работы через COM-порт:

Так и через USB (на самом деле тоже com, только через преобразователь на ИМС MAX232).

Заключение

Микроконтроллеры PIC16 подходят для простых проектов, типа простой автоматики, вольтметров, термометров и прочих мелочей. Но это не значит, что нельзя делать на этом семействе сложные и большие проекты, я привел пример того для чего чаще всего их используют. Для общего представления рекомендую посмотреть несколько видео:

В одной статье рассматривать темы о том, как программировать микроконтроллеры, неважно какого семейства, безсмысленно. Поскольку это очень большой объём информации. Для начинающих советую к прочтению:

Катцен С. — PIC-микроконтроллеры. Все что вам необходимо знать;

Кёниг А. — Полное руководство по PIC микроконтроллерам;

Шпак Ю.А. — Программирование на языке С для AVR и PIC микроконтроллеров;

Магда Ю.С. — Микроконтроллеры PIC: архитектура и программирование;

Яценков В.С. — Микроконтроллеры Microchip. Практическое руководство.

На современном рынке есть ряд семейств и серий микроконтроллеров от разных производителей, среди них можно выделить AVR, STM32 и PIC. Каждое из семейств нашло свою сферу применения. В этой статье я расскажу начинающим о микроконтроллерах PIC, а именно, что это такое и что нужно знать для начала работы с ними.

Что такое PIC

PIC – это название серии микроконтроллеров, которые производятся компанией Microchip Technology Inc (США). Название PIC происходит от Peripheral Interface Controller.

Микроконтроллеры PIC имеют RISC-архитектуру. RISC – сокращённый набор команд, используется также в процессорах для мобильных устройств. Есть целый ряд примеров её использования: ARM, Atmel AVR и другие.

Компания Microchip в 2016 году купила Atmel – производителя контроллеров AVR. Поэтому на официальном сайте представлены микроконтроллеры семейства и PIC и AVR.

Семейства

Среди 8-битных микроконтроллеров PIC она состоит из 3-х семейств, которые отличаются архитектурой (разрядностью и набором команд).

Baseline (PIC10F2xx, PIC12F5xx, PIC16F5x, PIC16F5xx) ;

Mid-range (PIC10F3xx, PIC12F6xx, PIC12F7xx, PIC16F6xx, PIC16F7xx, PIC16F8xx, PIC16F9xx) ;

Enhanced Mid-range (PIC12F1xxx, PIC16F1xxx) ;

High-end или PIC18 (18Fxxxx, 18FxxJxx and 18FxxKxx).

Характеристики, которых приведены в таблице ниже.

Кроме 8 битных микроконтроллеров компания Microchip производит 16-битные:

DsPIC30/33F для обработки сигналов.

Представители 16-битного семейства работают со скоростью от 16 до 100 MIPS (выполнено миллионов инструкций в секунду). Стоит отметить и особенности:

машинный цикл – 2 такта;

разрядность АЦП – 16 бит;

поддерживают ряд протоколов связи (UART, IrDA, SPI, I2S™, I2C, USB, CAN, LIN and SENT), ШИМ и прочее.

Также есть семейство 32 битных микроконтроллеров – PIC32MX, основные особенности:

работают на частоте до 120 мГц;

выполняют до 150 MIPS;

АЦП: 10-бит, 1 Msps (скорость квантования), до 48 каналов.

С какого PIC начать?

Новичкам стоит начать осваивать микроконтроллеры PIC с 8-битной линейки. Вообще, производитель заявляет о том, что особенностью всего семейства является лёгкая переносимость программ с одного семейства на другое и совпадения цоколевки ряда моделей.

Одним из популярнейших в среде радиолюбителей микроконтроллеров является PIC16f628A. Его технические характеристики такие:

Есть встроенный тактовый генератор. Вы можете настроить для работы с частотой 4 или 8 МГц;

18 пинов, из них 16 – ввод/вывод, а 2 – питание;

Для работы на частотах до 20 МГц можно подключить кварцевый резонатор, но в этом случае на ввод/вывод останется не 16, а 14 ног;

В маркировке есть буква F, это значит, что используется FLASH-память, объёмом в 2048 слов;

14-битные инструкции, 35 штук;

4 аналоговых входа;

На входах PORTB есть подтягивающие резисторы;

Два 8-битных таймера и один 16-битный;

Машинный цикл – 4 такта кварцевого резонатора или внутреннего генератора);

128 байт EEPROM;

USART – последовательный порт;

внутренний источник опорного напряжения;

питается от 3.3 до 5 В.

Причинами популярности является низкая цена и возможность тактирования от внутреннего генератора.

Какая цоколевка у 16f628 изображено ниже:

Блочная внутренняя схема этого микроконтроллера изображена ниже.

На что следует обратить внимание на схеме в первую очередь?

У этого микроконтроллера есть два порта PORTA и PORTB. Каждый пин, каждого из них может использоваться как вход и выход, а также для подключения периферии или задействования других модулей микроконтроллера.

Рассмотрим эту часть схемы крупно.

Например, порты RB0-RB3 – могут выступать в роли аналоговых. К RA6, RA7 в случае необходимости подключается источник тактирования (кварцевый резонатор). Сами же выводы микроконтроллера настраиваются в режим входа/выхода с помощью регистра TRIS.

Для этого есть команды типа:

TRISA = 0; // Все выводы порта А устанавливаются как выходы
TRISB = 0xff; // Все выводы порта B назначаются как входы
TRISA0 = 1; // Так назначается отдельный пин как вход (1) или выход (0)
TRISA5 = 1 ; // здесь 5 вывод порта А – назначен входом

Вообще режимы работы, включение WDT (сторожевого таймера) выбор источника тактирования микроконтроллера и прочее настраивается с помощью регистров специального назначения — SFR, а память и данные хранятся в GFR – простыми словами это статическое ОЗУ.

В официальном Datasheet, на страницах 18-21 вы найдете 4 банка памяти регистров специального назначения SFR и регистров общего назначения GFR. Знание регистров важно, поэтому распечатайте и выучите указанные страницы из Datasheet .

Для удобства ниже приведены эти таблицы в виде картинок (нумерация регистров, как и всё в цифровой электронике начинается с 0, поэтому номер четвертого – 3).

Как подключить и на каком языке программировать?

Чтобы запустить этот микроконтроллер достаточно подать плюс на Vdd и минус на Vss. Если нужен кварцевый резонатор, то он подключается к выводам 16 и 15 (OSC1 и OSC2) микроконтроллера PIC16f628, для других контроллеров с большим или меньшим числом выводов – смотрите в datasheet. Но этот момент нужно указывать при программировании и прошивке.

Кстати о переносимости и совпадении цоколевки – на 16f84A – она аналогична, и на многих других.

Фрагмент схемы с подключенным к pic16f628a внешним резонатором:

Есть два основных языка для программирования микроконтроллеров PIC – это assembler и C, есть и другие, например PICBasic и т.д. Еще можно выделить упрощенный язык программирования JAL (just another language).

Для примера ниже приведена программа для «мигания светодиодом» — своего рода «Hello World» для микроконтроллера PIC на языке C.

В 1 строке подключается библиотека микроконтроллеров PIC, далее подключается библиотека программы задержки.

В функции main(void) в начале устанавливаются начальные параметры, подобно тому как мы это делали в функции Void setup () – в статьях об ардуино. Далее в строках 11-16 объявляется бесконечный цикл while(1), в ходе которого и выполняется программа «мигания светодиодом».

В примере состояние порта постоянно инвертируется, т.е. если он был в «0», то перейдет в «1» и наоборот. На C для PIC есть следующие команды управления команды:

PORTA = 0; // переводит все пины порта А в низкий уровень (лог. 0)
PORTB = 0xff; // переводит все пины порта B в высокий уровень (лог. 1)
RB5 = 1; // На пятом выводе порта B высокий уровень

А так выглядит та же программа, но уже на языке JAL, я перевел на русский язык комментарии от разработчиков встроенных примеров в JALedit (среда разработки).

Возникает соблазн выбрать JAL, и вам он может показаться проще. Безусловно на нём можно реализовать любые проекты, но с точки зрения пользы для вас как для специалиста – это бесполезный язык. Значительно больших результатов вы добьетесь, изучая синтаксис и принципы программирования на языке C (большая часть популярных сейчас языков C-подобны) или на Assembler – это низкоуровневый язык, который заставит вас понимать принцип работы устройства и что происходит в программе в каждый конкретный момент времени.

В чем работать

Если сказать совсем обобщенно для работы с любыми микроконтроллерами нужно:

1. Текстовый редактор.

3. Программа для загрузки прошивки в микроконтроллер.

И я даже читал старые учебники, где автор, работая из-под DOS писал код, компилировал и прошивал его разными средствами. Сейчас же под все популярные операционные системы есть среды для разработки, как узкоспециализированные (для конкретного семейства микроконтроллеров или семейств от одного производителя) так и универсальные (либо содержат все необходимые инструменты, либо они подключаются в виде плагинов).

Например, в цикле статей об Arduino мы рассматривали среду Arduino IDE в ней же мы и код писали и с её помощью «заливали» прошивку в «камень». Для микроконтроллеров PIC есть такие программы, как:

MPASM — используется для разработки на языке Assembler от фирмы Microchip ;

MPLAB — также IDE от Microchip для PIC-контроллеров. Состоит из множества блоков для тестирования, проверки, работы с кодом и компиляции программ и загрузки в микроконтроллер. Также есть версия MPLAB X IDE – отличается большим функционалом и построена на базе платформы NetBeans ;

MikroC — универсальная среда (не только для ПИКов) для разработки. Как видно из названия «заточена» под программирование на C, а также есть такие программы как MikroBasic и MikroPascal, для соответствующих языков ;

JALedit — подходит для языка JAL, о котором мы упоминали выше ;

И ряд других менее известных.

Как прошивать микроконтроллер?

Для PIC-микронотроллеров есть ряд программаторов. Официальным считается PICkit. Их 4 версии. Но можно прошивать и универсальными, например, TL866 (он поддерживает почти всё, что может понадобится начинающему радиолюбителю, при этом очень дешевый).

Также в сети есть ряд различных схем программаторов для ПИКов, как для работы через COM-порт:

Так и через USB (на самом деле тоже com, только через преобразователь на ИМС MAX232).

Заключение

Микроконтроллеры PIC16 подходят для простых проектов, типа простой автоматики, вольтметров, термометров и прочих мелочей. Но это не значит, что нельзя делать на этом семействе сложные и большие проекты, я привел пример того для чего чаще всего их используют. Для общего представления рекомендую посмотреть несколько видео:

В одной статье рассматривать темы о том, как программировать микроконтроллеры, неважно какого семейства, безсмысленно. Поскольку это очень большой объём информации. Для начинающих советую к прочтению:

Катцен С. — PIC-микроконтроллеры. Все что вам необходимо знать;

Кёниг А. — Полное руководство по PIC микроконтроллерам;

Шпак Ю.А. — Программирование на языке С для AVR и PIC микроконтроллеров;

Магда Ю.С. — Микроконтроллеры PIC: архитектура и программирование;

Яценков В.С. — Микроконтроллеры Microchip. Практическое руководство.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector