Почему 9 не простое число

В статье рассматриваются понятия простых и составных чисел. Даются определения таких чисел с примерами. Приводим доказательство того, что количество простых чисел неограниченно и произведем запись в таблицу простых чисел при помощи метода Эратосфена. Будут приведены доказательства того, является ли число простым или составным.

Простые и составные числа – определения и примеры

Простые и составные числа относят к целым положительным. Они обязательно должны быть больше единицы. Делители также подразделяют на простые и составные. Чтобы понимать понятие составных чисел, необходимо предварительно изучить понятия делителей и кратных.

Простыми числами называют целые числа, которые больше единицы и имеют два положительных делителя, то есть себя и 1 .

Составными числами называют целые числа, которые больше единицы и имеют хотя бы три положительных делителя.

Единица не является ни простым ни составным числом. Она имеет только один положительный делитель, поэтому отличается от всех других положительных чисел. Все целые положительные числа называют натуральными, то есть используемые при счете.

Простые числа – это натуральные числа, имеющие только два положительных делителя.

Составное число – это натуральное число, имеющее более двух положительных делителей.

Любое число, которое больше 1 является либо простым, либо составным. Из свойства делимости имеем, что 1 и число а всегда будут делителями для любого числа а , то есть оно будет делиться само на себя и на 1 . Дадим определение целых чисел.

Натуральные числа, которые не являются простыми, называют составными.

Простые числа: 2 , 3 , 11 , 17 , 131 , 523 . Они делятся только сами на себя и на 1 . Составные числа: 6 , 63 , 121 , 6697 . То есть число 6 можно разложить на 2 и 3 , а 63 на 1 , 3 , 7 , 9 , 21 , 63 , а 121 на 11 , 11 , то есть его делители будут 1 , 11 , 121 . Число 6697 разложится на 37 и 181 . Заметим, что понятия простых чисел и взаимно простых чисел – разные понятия.

Таблица простых чисел

Для того, чтобы было проще использовать простые числа, необходимо использовать таблицу:

Таблица для всех существующих натуральных чисел нереальна, так как их существует бесконечное множество. Когда числа достигают размеров 10000 или 1000000000 , тогда следует задуматься об использовании решета Эратосфена.

Рассмотрим теорему, которая объясняет последнее утверждение.

Наименьший положительный и отличный от 1 делитель натурального числа, большего единицы, является простым числом.

Возьмем, что а является натуральным числом, которое больше 1 , b является наименьшим отличным от единицы делителем для числа а . Следует доказать, что b является простым числом при помощи метода противного.

Допустим, что b – составное число. Отсюда имеем, что есть делитель для b , который отличен от 1 как и от b . Такой делитель обозначается как b 1 . Необходимо, чтобы условие 1 b 1 b было выполнено.

Из условия видно, что а делится на b , b делится на b 1 , значит, понятие делимости выражается таким образом: a = b · q и b = b 1 · q 1 , откуда a = b 1 · ( q 1 · q ) , где q и q 1 являются целыми числами. По правилу умножения целых чисел имеем, что произведение целых чисел – целое число с равенством вида a = b 1 · ( q 1 · q ) . Видно, что b 1 – это делитель для числа а . Неравенство 1 b 1 b не соответствует, потому как получим, что b является наименьшим положительным и отличным от 1 делителем а .

Простых чисел бесконечно много.

Предположительно возьмем конечное количество натуральных чисел n и обозначим как p 1 , p 2 , … , p n . Рассмотрим вариант нахождения простого числа, отличного от указанных.

Примем на рассмотрение число р, которое равняется p 1 , p 2 , … , p n + 1 . Оно не равняется каждому из чисел, соответствующих простым числам вида p 1 , p 2 , … , p n . Число р является простым. Тогда считается, что теорема доказана. Если оно составное, тогда нужно принять обозначение p n + 1 и показать несовпадение делителя ни с одним из p 1 , p 2 , … , p n .

Если это было бы не так, тогда, исходя из свойства делимости произведения p 1 , p 2 , … , p n , получим, что оно делилось бы на p n + 1 . Заметим, что на выражение p n + 1 делится число р равняется сумме p 1 , p 2 , … , p n + 1 . Получим, что на выражение p n + 1 должно делиться второе слагаемое этой суммы, которое равняется 1 , но это невозможно.

Видно, что может быть найдено любое простое число среди любого количества заданных простых чисел. Отсюда следует, что простых чисел бесконечно много.

Так как простых чисел очень много, то таблицы ограничивают числами 100 , 1000 , 10000 и так далее.

Решето Эратосфена

При составлении таблицы простых чисел следует учитывать то, что для такой задачи необходима последовательная проверка чисел, начиная с 2 до 100 . При отсутствии делителя оно фиксируется в таблицу, если оно составное, то в таблицу не заносится.

Если начать с числа 2 , то оно имеет только 2 делителя: 2 и 1, значит, его можно занести в таблицу. Также и с числом 3 . Число 4 является составным, следует разложить его еще на 2 и 2 . Число 5 является простым, значит, можно зафиксировать в таблице. Так выполнять вплоть до числа 100 .

Читайте также:  Fips mode что это

Данный способ неудобный и долгий. Таблицу составить можно, но придется потратить большое количество времени. Необходимо использовать признаки делимости, которые ускорят процесс нахождения делителей.

Способ при помощи решета Эратосфена считают самым удобным. Рассмотрим на примере таблиц, приведенных ниже. Для начала записываются числа 2 , 3 , 4 , … , 50 .

Теперь необходимо зачеркнуть все числа, которые кратны 2 . Произвести последовательное зачеркивание. Получим таблицу вида:

Далее вычеркиваем все числа, кратные 3 . Получаем таблицу вида:

Переходим к вычеркиванию чисел, кратных 5 . Получим:

Вычеркиваем числа, кратные 7 , 11 . В конечном итоге таблица получает вид

Перейдем к формулировке теоремы.

Наименьший положительный и отличный от 1 делитель основного числа а не превосходит a , где a является арифметическим корнем заданного числа.

Необходимо обозначить b наименьший делитель составного числа а . Существует такое целое число q , где a = b · q , причем имеем, что b ≤ q . Недопустимо неравенство вида b > q , так как происходит нарушение условия. Обе части неравенства b ≤ q следует умножить на любое положительное число b , не равное 1 . Получаем, что b · b ≤ b · q , где b 2 ≤ a и b ≤ a .

Из доказанной теоремы видно, что вычеркивание чисел в таблице приводит к тому, что необходимо начинать с числа , которое равняется b 2 и удовлетворяет неравенству b 2 ≤ a . То есть, если вычеркнуть числа, кратные 2 , то процесс начинается с 4 , а кратных 3 – с 9 и так далее до 100 .

Составление такой таблицы при помощи теоремы Эратосфена говорит о том, что при вычеркивании всех составных чисел, останутся простые, которые не превосходят n . В примере, где n = 50 , у нас имеется, что n = 50 . Отсюда и получаем, что решето Эратосфена отсеивает все составные числа, которые по значению не больше значения корня из 50 . Поиск чисел производится при помощи вычеркивания.

Данное число простое или составное?

Перед решением необходимо выяснять, является ли число простым или составным. Зачастую используются признаки делимости. Рассмотрим это на ниже приведенных примере.

Доказать что число 898989898989898989 является составным.

Сумма цифр заданного числа равняется 9 · 8 + 9 · 9 = 9 · 17 . Значит, число 9 · 17 делится на 9 , исходя из признака делимости на 9 . Отсюда следует, что оно составное.

Такие признаки не способны доказать простоту числа. Если нужна проверка, следует производить другие действия. Самый подходящий способ – это перебор чисел. В течение процесса можно найти простые и составные числа. То есть числа по значению не должны превосходить a . То есть число а необходимо разложить на простые множители. если это будет выполнено, тогда число а можно считать простым.

Определить составное или простое число 11723 .

Теперь необходимо найти все делители для числа 11723 . Необходимо оценить 11723 .

Отсюда видим, что 11723 200 , то 200 2 = 40 000 , а 11 723 40 000 . Получаем, что делители для 11 723 меньше числа 200 .

Для более точной оценки числа 11723 необходимо записать выражение 108 2 = 11 664 , а 109 2 = 11 881 , то 108 2 11 723 109 2 . Отсюда следует, что 11723 109 . Видно, что любое число, которое меньше 109 считается делителем для заданного числа.

При разложении получим, что 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 , 97 , 101 , 103 , 107 – это все простые числа. Весь данный процесс можно изобразить как деление столбиком. То есть разделить 11723 на 19 . Число 19 является одним из его множителей, так как получим деление без остатка. Изобразим деление столбиком:

Отсюда следует, что 11723 является составным числом, потому как кроме себя и 1 имеет делитель 19 .

Ответ: 11723 является составным числом.

Простые числа — это целые натуральные (положительные) числа больше единицы, которые имеют ровно 2 натуральных делителя (только 1 и самого себя), т.е. не делится ни на одно другое число, кроме самого себя и единицы. Все остальные числа кроме единицы называются составными. Таким образом, все натуральные числа, за исключением единицы, разбиваются на простые и составные.

  • Подробнее о простых числах сможете узнать в видео уроке "Простые и составные числа"

Последовательность простых чисел начинается так (от 2 до 10000 их 1229):

Математик Джеймс Мэйнард о теореме Евклида, гипотезе Римана и современных исследованиях тайн простых чисел

giphy.com

Бесконечное число простых чисел

Некоторые считают, что простые числа не стоят глубокого изучения, но они имеют фундаментальное значение для математики. Каждое число может быть представлено уникальным способом в виде простых чисел, умноженных друг на друга. Это значит, что простые числа — это «атомы умножения», маленькие частички, из которых может быть построено что-то большое.

Так как простые числа — это строительные элементы целых чисел, которые получаются с помощью умножения, многие проблемы целых чисел могут быть сведены к проблемам простых чисел. Подобным образом некоторые задачи в химии могут быть решены с помощью атомного состава химических элементов, вовлеченных в систему. Таким образом, если бы существовало конечное число простых чисел, можно было бы просто проверить одно за другим на компьютере. Однако оказывается, что существует бесконечное множество простых чисел, которые на данный момент плохо понимают математики.

Греческий математик Евклид доказал, что существует бесконечное множество простых чисел. Если у вас есть определенное количество простых чисел, например p1,… pn, вы можете рассмотреть число p1×…×pn + 1, которое на единицу больше, чем все простые числа, умноженные друг на друга. Это число не может быть произведением любых чисел p1,… pn из вашего списка, но оно точно больше, чем 1. Так что все простые множители должны быть простыми числами, которых нет в вашем списке. Добавляя новые простые числа в ваш список и повторяя те же действия, вы всегда можете найти по крайней мере одно новое простое число. Поэтому должно существовать бесконечное множество простых чисел.

Читайте также:  Самсунг модель sm g920f

История изучений

Никто точно не знает, в каком обществе стали впервые рассматривать простые числа. Их изучают так давно, что у ученых нет записей тех времен. Есть предположения, что некоторые ранние цивилизации имели какое-то понимание простых чисел, но первым реальным доказательством этого являются египетские записи на папирусах, сделанные более 3500 лет назад.

Древние греки, скорее всего, были первыми, кто изучал простые числа как предмет научного интереса, и они считали, что простые числа важны для чисто абстрактной математики. Теорему Евклида по-прежнему изучают в школах, несмотря на то что ей уже больше 2000 лет.

После греков серьезное внимание простым числам снова уделили в XVII веке. С тех пор многие известные математики внесли важный вклад в наше понимание простых чисел. Пьер де Ферма совершил множество открытий и известен благодаря Великой теореме Ферма, 350-летней проблеме, связанной с простыми числами и решенной Эндрю Уайлсом в 1994 году. Леонард Эйлер доказал много теорем в XVIII веке, а в XIX веке большой прорыв был сделан благодаря Карлу Фридриху Гауссу, Пафнутию Чебышёву и Бернхарду Риману, особенно в отношении распределения простых чисел. Кульминацией всего этого стала до сих пор не решенная гипотеза Римана, которую часто называют важнейшей нерешенной задачей всей математики. Гипотеза Римана позволяет очень точно предсказать появление простых чисел, а также отчасти объясняет, почему они так трудно даются математикам.

Практические применения

У простых чисел существует огромное количество применений как в области математики, так и за ее пределами. Простые числа в наши дни используются практически ежедневно, хотя чаще всего люди об этом не подозревают. Простые числа представляют такое значение для ученых, поскольку они являются атомами умножения. Множество абстрактных проблем, касающихся умножения, можно было бы решить, если бы люди знали больше о простых числах. Математики часто разбивают одну проблему на несколько маленьких, и простые числа могли бы помочь в этом, если бы понимали их лучше.

Вне математики основные способы применения простых чисел связаны с компьютерами. Компьютеры хранят все данные в виде последовательности нулей и единиц, которая может быть выражена целым числом. Многие компьютерные программы перемножают числа, привязанные к данным. Это означает, что под самой поверхностью лежат простые числа. Когда человек совершает любые онлайн-покупки, он пользуется тем, что есть способы умножения чисел, которые сложно расшифровать хакеру, но легко покупателю. Это работает за счет того, что простые числа не имеют особенных характеристик — в противном случае злоумышленник мог бы получить данные банковской карты.

Поиск новых простых чисел

Один из способов нахождения простых чисел — это компьютерный поиск. Путем многократной проверки того, является ли число множителем 2, 3, 4 и так далее, можно легко определить, простое ли оно. Если оно не является множителем любого меньшего числа, оно простое. В действительности это очень трудоемкий способ выяснения того, является ли число простым. Однако существуют более эффективные пути это определить. Эффективность этих алгоритмов для каждого числа является результатом теоретического прорыва 2002 года.

Простых чисел достаточно много, поэтому если взять большое число и прибавить к нему единицу, то можно наткнуться на простое число. В действительности многие компьютерные программы полагаются на то, что простые числа не слишком трудно найти. Это значит, что, если вы наугад выберете число из 100 знаков, ваш компьютер найдет большее простое число за несколько секунд. Поскольку 100-значных простых чисел больше, чем атомов во Вселенной, то вполне вероятно, что никто не будет знать наверняка, что это число простое.

Как правило, математики не ищут отдельных простых чисел на компьютере, однако они очень заинтересованы в простых числах с особыми свойствами. Есть две известные проблемы: существует ли бесконечное количество простых чисел, которые на один больше, чем квадрат (например, это имеет значение в теории групп), и существует ли бесконечное количество пар простых чисел, отличающихся друг от друга на 2.

Тайны простых чисел

Несмотря на то, что простые числа изучаются уже более трех тысячелетий и имеют простое описание, о простых числах до сих пор известно на удивление мало. Например, математики знают, что единственной парой простых чисел, отличающихся на единицу, являются 2 и 3. Однако неизвестно, существует ли бесконечное количество пар простых чисел, отличающихся на 2. Предполагается, что существует, но это пока не доказано. Это проблема, которую можно объяснить ребенку школьного возраста, однако величайшие математические умы ломают над ней голову уже более 100 лет.

Читайте также:  Как запустить виндовс с помощью командной строки

Многие из наиболее интересных вопросов о простых числах как с практической, так и с теоретической точки зрения заключаются в том, какое количество простых чисел имеет то или иное свойство. Ответ на самый простой вопрос — сколько есть простых чисел определенного размера — теоретически можно получить, решив гипотезу Римана. Дополнительный стимул доказать гипотезу Римана — приз размером в один миллион долларов, предложенный математическим институтом Клэя, равно как и почетное место среди самых выдающихся математиков всех времен.

Сейчас существуют неплохие способы предположить, каким будет правильный ответ на многие из этих вопросов. На данный момент догадки математиков проходят все численные эксперименты, и есть теоретические основания, чтобы на них полагаться. Однако для чистой математики и работы компьютерных алгоритмов чрезвычайно важно, чтобы эти догадки действительно были верными. Математики могут быть полностью удовлетворены, только имея неоспоримое доказательство.

Самым серьезным вызовом для практического применения является сложность нахождения всех простых множителей числа. Если взять число 15, можно быстро определить, что 15=5×3. Но если взять 1000-значное число, вычисление всех его простых множителей займет больше миллиарда лет даже у самого мощного суперкомпьютера в мире. Интернет-безопасность во многом зависит от сложности таких вычислений, потому для безопасности коммуникации важно знать, что кто-то не может просто взять и придумать быстрый способ найти простые множители.

Современные исследования

Несмотря на то, что эта тема стара и затрагивала многих известных математиков на протяжении всей истории, она по-прежнему актуальна. Ученые не знают, существует ли бесконечное количество пар таких простых чисел, как 3 и 5, отличающихся на 2. Это известная нерешенная проблема. Математик Итан Чжан сделал большой прорыв в отношении этой проблемы. В начале 2013 года ученые не знали, существует ли бесконечное количество пар простых чисел в пределах 1 квинтиллиона друг от друга или для любого числа, помимо 1 квинтиллиона, независимо от его величины. Благодаря теоретическим наработкам, основанным на работе Чжана, математики знают, что существует бесконечное количество простых чисел, отличающихся друг от друга не больше чем на 246. Число 246 гораздо больше двух, однако оно заметно меньше бесконечности.

Вместо того чтобы искать простые числа, находящиеся рядом, можно искать те из них, что находятся далеко друг от друга на числовой оси. Заметный теоретический прорыв в этой проблеме был сделан впервые за более чем 75 лет в начале 2014 года, когда исследователи из Математического института Оксфорда решили одну из проблем Эрдёша. Другие два интересных решения проблем Эрдёша, связанных с простыми числами, были сделаны Бобом Хафом и Теренсом Тао, чья работа была основана на еще одном прорыве, сделанном Каисой Матомаки и Максимом Раджвиллом в 2014 году. Харальд Гельфготт с Дэвидом Платтом наконец доказали слабую гипотезу Гольдбаха, доведя до кульминации сто лет различных находок. Математики привыкли к тому, что нужно ждать десять лет до достижения серьезного результата в области простых чисел, однако на этот раз получили полдюжины таких результатов за последние три года.

Простые числа в будущем

Сейчас невозможно сказать, как простые числа будут использоваться в будущем. Чистая математика (например, изучение простых чисел) неоднократно находила способы применения, которые могли показаться совершенно невероятными, когда теория впервые разрабатывалась. Снова и снова идеи, воспринимавшиеся как чудной академический интерес, непригодный в реальном мире, оказывались на удивление полезными для науки и техники. Годфри Харольд Харди, известный математик начала XX столетия, утверждал, что простые числа не имеют реального применения. Сорок лет спустя был открыт потенциал простых чисел для компьютерной коммуникации, и сейчас они жизненно необходимы для повседневного использования интернета.

Поскольку простые числа лежат в основе проблем, касающихся целых чисел, а целые числа постоянно встречаются в реальной жизни, простым числам найдется повсеместное применение в мире будущего. Это особенно актуально, учитывая, как интернет проникает в жизнь, а технологии и компьютеры играют большую роль, чем когда-либо раньше.

Существует мнение, что определенные аспекты теории чисел и простых чисел выходят далеко за рамки науки и компьютеров. В музыке простые числа объясняют, почему некоторые сложные ритмические рисунки долго повторяются. Это порой используется в современной классической музыке для достижения специфического звукового эффекта. Последовательность Фибоначчи постоянно встречается в природе, и есть гипотеза о том, что цикады эволюционировали таким образом, чтобы находиться в спячке в течение простого числа лет для получения эволюционного преимущества. Также предполагается, что передача простых чисел по радиоволнам была бы лучшим способом для попытки установления связи с инопланетными формами жизни, поскольку простые числа абсолютно независимы от любого представления о языке, но при этом достаточно сложны, чтобы их нельзя было спутать с результатом некоего в чистом виде физического природного процесса.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector