Энергия и плотность энергии электрического поля

Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.

Процесс зарядки конденсатора можно представить как последовательный перенос достаточно малых порций заряда Δq > 0 с одной обкладки на другую (рис. 1.7.1). При этом одна обкладка постепенно заряжается положительным зарядом, а другая – отрицательным. Поскольку каждая порция переносится в условиях, когда на обкладках уже имеется некоторый заряд q, а между ними существует некоторая разность потенциалов при переносе каждой порции Δq внешние силы должны совершить работу

Энергия Wе конденсатора емкости C, заряженного зарядом Q, может быть найдена путем интегрирования этого выражения в пределах от 0 до Q:

Формулу, выражающую энергию заряженного конденсатора, можно переписать в другой эквивалентной форме, если воспользоваться соотношением Q = CU.

Электрическую энергию Wе следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе. Формулы для Wе аналогичны формулам для потенциальной энергии Eр деформированной пружины (см. ч. I, § 2.4)

где k – жесткость пружины, x – деформация, F = kx – внешняя сила.

По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля. Это легко проиллюстрировать на примере заряженного плоского конденсатора. Напряженность однородного поля в плоском конденсаторе равна E = U/d, а его емкость Поэтому

где V = Sd – объем пространства между обкладками, занятый электрическим полем. Из этого соотношения следует, что физическая величина

является электрической (потенциальной) энергией единицы объема пространства, в котором создано электрическое поле. Ее называют объемной плотностью электрической энергии.

Энергия поля, созданного любым распределением электрических зарядов в пространстве, может быть найдена путем интегрирования объемной плотности wе по всему объему, в котором создано электрическое поле.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9138 – | 7301 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Читайте также:  Mysql connect error connection refused

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Диэлектрическая проницаемость

Любая среда уменьшает действие электрического поля.
Относительная диэлектрическая проницаемость (ε) – число, показывающее во сколько раз кулоновская сила в вакууме больше такой же силы в данной среде: ε = Fвак/Fср. Зависит от материала среды.

Формулы, где встречается диэлектрическая проницаемость:

– Кулоновская сила взаимодействия точечных зарядов.

– Напряженность поля точечного заряда.

– Емкость плоского

Энергия электрического поля. Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает Частное U / d равно напряженности поля в зазоре; произведение S·d представляет собой объем V, занимаемый полем. Следовательно, Если поле однородно (что имеет место в плоском конденсаторе при расстоянии dмного меньшем, чем линейные размеры обкладок), то заключенная в нем энергия распределяется в пространстве с постоянной плотностью w. Тогда объемная плотность энергии электрического поля равна
C учетом соотношения можно записать

Дата добавления: 2015-03-29 ; Просмотров: 1536 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Будем заряжать плоский конденсатор, перенося малые порции заряда dq с одной обкладки на другую (рис. 4.12.) Для того чтобы перенести заряд dq между обкладками с разностью потенциалов (j1 – j2) необходимо совершить работу

Учитывая, что , эту работу можно записать ещё и так

Для того чтобы первоначально незаряженному конденсатору сообщить заряд Q, необходимо совершить работу

Эта работа равна энергии заряженного конденсатора

(4.12)

Здесь — напряжение на конденсаторе, равное разности потенциалов на его обкладках.

Продолжим преобразования уравнения (4.12).

Вспомним, что ёмкость плоского конденсатора

,

а напряжение связано с напряжённостью электрического поля

Воспользовавшись этими соотношениями, запишем энергию заряженного конденсатора в таком виде

(4.13)

Эти два выражения энергии конденсатора

приводят к следующему принципиальному вопросу: где в конденсаторе располагается энергия? Где она «локализована»?

Читайте также:  Известные блоггеры ютуба девушки

Если она связана с электрическими зарядами, то она находиться на обкладках конденсатора. Если же это энергия электрического поля, то она занимает пространство между обкладками, объем которого равен объему конденсатора V = Sd.

Для ответа на этот вопрос нужно было бы заряд с обкладок убрать, а поле при этом оставить. Тогда можно было бы посмотреть: осталась энергия — значит, она связана с полем, исчезла — значит, она располагалась вместе с зарядом на обкладках.

Но проблема-то в том, что при удалении зарядов исчезает, конечно, и их электростатическое поле. Поэтому вопрос о локализации энергии в рамках электростатики не может быть решён.

В электродинамике переменные электрические и магнитные поля, как известно, могут существовать и без электрических зарядов. Причем такие поля обладают энергией, что является прямым экспериментальным доказательством того, что эта энергия связана с электрическими полями и локализована в объёме, занятом полем. Теперь становиться понятнее последнее выражение энергии заряженного конденсатора:

Энергия конденсатора связана с его электрическим полем и поэтому пропорциональна объёму конденсатора (V), то есть объёму поля.

Отношение представляет собой среднее значение энергии, приходящейся на единичный объём поля .

Эта характеристика энергетической насыщённости поля получила название «объёмная плотность энергии».

Обычно эта характеристика носит точечный, локальный характер. Вокруг заданной точки выбирают элементарный объём dV и вычисляют энергетическую плотность, деля энергию этой области dW на её объём

(4.14)

Объёмная плотность энергии в заданной точке электрического поля пропорциональна квадрату напряжённости поля в этой точке. Измеряется объёмная плотность энергии, конечно, в Дж/м 3 :

.

Зная, как меняется плотность энергии в пространстве, можно вычислить энергию, сосредоточенную в объёме V, электрического поля:

.

Проводящий шар радиусом R несет заряд Q. Какова энергия электрического поля этого шара?

Поле внутри заряженного шара отсутствует, а вне шара оно совпадает с полем точечного заряда:

, r ³ R

Объёмная плотность энергии такого поля

Вычислим энергию, сосредоточенную в сферическом слое толщиной dr (рис. 4.13.)

Читайте также:  Amd radeon 1200 series

Теперь просуммируем энергии всех слоёв от R до ¥

Вспомним, что 4peR = с — ёмкость шара (см. 4.4.), а — его потенциал. Тогда:

. (4.15)

Эта энергия поля равна работе, которая была совершена при зарядке шара до потенциала j = . Покажем это.

Начнем заряжать шар, перенося на него из бесконечности электрические заряды малыми порциями dq. Если в некоторый момент времени заряд шара окажется равным q, а его потенциал — то при переносе следующей порции заряда dq придется совершить работу против сил электрического поля

Теперь легко вычислить полную работу, которую необходимо проделать, чтобы передать первоначально незаряженному шару заряд Q:

Эта работа, как и ожидалось, равна энергии электрического поля, созданного нами при зарядке шара (см. 4.15).

Лекция 5 «Электрическое поле в диэлектриках»

1. Типы диэлектриков. Поляризация диэлектриков. Поляризуемость и вектор поляризации.

2. Диэлектрическая проницаемость. Вектор электрического смещения.

3. Законы электрического поля в диэлектриках.

3.1. Закон Кулона.

3.2. Теорема Остроградского-Гаусса.

4. Граничные условия для электрического поля на поверхности раздела двух диэлектриков.

На прошлой лекции рассматривалось явление электростатической индукции — разделение зарядов проводника в электрическом поле. Свободные заряды в проводнике перемещаются под действием внешнего поля до тех пор, пока результирующее электрическое поле внутри проводника не окажется равным нулю. В связи с этим говорят, что проводник «разрушает электрическое поле, низводя его напряжённость до нуля».

Из школьного курса известно, что и диэлектрики оказывают заметное влияние на электрическое поле: напряжённость поля в диэлектрике уменьшается в e раз по сравнению с полем в вакууме Е: . Здесь e — диэлектрическая проницаемость вещества.

Такое влияние диэлектрика на электрическое поле обусловлено поляризацией диэлектрика.

Явление поляризации и законы электрического поля в диэлектриках — тема настоящей лекции.

Дата добавления: 2015-08-08 ; просмотров: 1325 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector