Ipv4 адрес что это такое

Весь интернет может работать благодаря IP адресам, которые приписываются абсолютно каждому устройству в сети, будь то локальная, по сути закрытая сеть и, конечно же, глобальная всемирная паутина.

Чтобы у каждого такого устройства была возможность идентифицировать себя, нужен был определенный формат приписываемых им адресов, и первым таким стал — интернет протокол IPv4.

Продолжаем тему работы глобальной паутины, из прошлого материала вы могли узнать про TCP протокол, сейчас же мы рассмотрим другой — IPv4, зачем он нужен и какие функции выполняет.

IPv4 — что это такое?

IPv4 — это четвертая версия интернет протокола IP адресов. Отвечает за формирование и вида айпи и является по сути основой для обслуживания сети. Именно эта версия стала очень популярной и востребованной, все благодаря понятному формату ИП-адресов и легкости их запоминания. Полностью расшифровывается, как — Internet Protocol version 4.

Используется в стеке протоколов TCP/IP. Позволяет создавать 4.3 миллиарда адресов, что довольно много. Но, к сожалению, к нашему времени и этого количества стало не хватать, поэтому, как приемнику этого протокола был создан новый — IPv6.

На данный момент является основной версией интернет протокола, который обслуживает весь интернет. Ведь переход на IPv6 стоит огромных денег, ресурсов и времени.

Данная версия протокола была прописана в документе RFC 791 в сентябре 1981 года, пришедшем на смену RFC 760, 80 года.

IPv4 адреса

Данный протокол использует IP размером в 32 бита, т.е. размером всего в 4 байта. Структурой он представляет — четыре числа в десятичном формате от 0 до 255 разделенных точками. В каждом таком числе 1 байт или 8 бит.

Слева некоторое количество чисел указывает на сеть, в которой находится данный адрес, а, с правой стороны на идентификатор самого устройства, расположенного в ней. Граница может находится где угодно между этими 32 битами. Например, первые 21 бит могут означать сеть, а оставшиеся 11 указывать на сам хост (устройство) внутри нее. Все это считается в двоичной системе счисления.

Хоть мы обычно и пишем такой айпи в десятичной системе счисления, но он может быть представлен и в другом формате:

С точкой:

  • В десятичном: 176.57.209.9
  • В двоичном: 10110000.00111001.11010001.00001001
  • В восьмеричном: 0260.0071.0321.0011
  • В шестнадцатеричном: 0xb0.30×9.0xd1.0x09

Без точки:

  • В десятичном: 2956579081
  • В двоичном: 10110000001110011101000100001001
  • В восьмеричном: 026016350411
  • В шестнадцатеричном: 0xb039d109

Классы IP адресов

Всего существует 5 классов IP:

Классовая адресация

Устаревшая технология, которая на данный момент не используется. Раньше применялась для распределения айпи. Но, так, как их количество ограничено, да и сама технология довольно негибкая — то от нее отказались.

Технология попросту не давала гибкости в распределении разных айпи, если, например, дали вам сеть 128.54.0.0/16 — то все, именно в ней надо располагать все устройства и разбить ее на несколько ну никак не получится. А если, например, на предприятии есть несколько независимых отделов и надо им сделать отдельные подсети? То придется запрашивать новые IPv4-адреса.

Или, например, нам нужно всего 6 айпи на всю компанию, естественно нам бы дали сеть класса C. Но в ней аж 254 айпи (2 убираем). Зачем нам столько, нам нужно то всего 6. А платить по сути придется больше, да и айпи будут пропадать впустую. Данную проблему отлично решила бесклассовая адресация.

Бесклассовая адресация (CIDR)

Сейчас используется CIDR (classless inter domain routing), т.е. бесклассовая адресация, которая позволяет гибко управлять пространством IP, без жестких рамок классовой адресации. С помощью нее можно создавать сети из нужного количества адресов. Кроме этого, одна большая сеть может включать в себя несколько мелких, которые также, могут быть разбиты на другие. Все это благодаря введению дополнительной метрики — маски подсети.

Читайте также:  Ufc 3 выйдет ли на пк

Например, есть сеть — 128.54.0.0/16, ее нужно разбить на 4 подсети. Просто берем третий по счету байт (октет) в хостовой части в двоичной системе и заимствуем у него первые 2 бита, потому что, 2 во 2-й степени дает 4. Значит префикс получается 16 + 2 = 18. Вот такие соответственно получаются подсети.

1: 128.54.0.0/18
2: 128.54.64.0/18
3: 128.54.128.0/18
4: 128.54.192.0/18

Чтобы было еще более понятно, переведем 128.54.0.0 в двоичный вид. Два бита могут принимать 4 разных значения это: 00, 01, 10, 11. Меняем теперь у айпи первые 2 бита у третьего по счету байта, а затем переводим все обратно в десятичную систему счисления.

1: 10000000.00110110.00000000.00000000 — 128.54.0.0
2: 10000000.00110110.01000000.00000000 — 128.54.64.0
3: 10000000.00110110.10000000.00000000 — 128.54.128.0
4: 10000000.00110110.11000000.00000000 — 128.54.192.0

Маска обычно указывается, после самого IPv4 адреса — после слеша «/» ставится число обозначающее битовую маску подсети, например, 14.12.17.0/24.

Само число после слеша, означает количество старших битов в маске подсети. Мы знаем, что IP в формате IPv4 состоит из 32 бит, маской являются старшие 24 бита, значит для возможных для использования адресов остается всего 8 бит (32 — 24 = 8). 2 в 8 степени — это 256 возможных адресов. А если бы мы, например, указали маску в 18 бит, то было бы: 32 — 18 = 14. 2 в 14 степени — это уже 16 384 вариантов.

Важно знать, что количество возможных хостов всегда будет меньше ровно на 2, т.к. первый будет идентификатором сети, а второй будет широковещательным.

Зарезервированные IP адреса

В формате IPv4 есть целый ряд айпи, которые уже зарезервированы. Вот их список:

В заключение

Попытался объяснить все, как можно более понятнее, чтобы вы точно разобрались. Заходите еще — будет еще много уроков по компьютерной грамотности и интересных статей на тему интернет технологий.

IP-адрес (Internet Protocol Address, айпи адрес) – это уникальный числовой идентификатор конкретного устройства в составе компьютерной сети, построенной на основе протокола TCP/IP. Для работы в Интернете требуется его глобальная уникальность. Для частной сети достаточно, чтобы были исключены совпадения в локальном пространстве.

Формат IP-адреса и как он выглядит

IP-адрес в сети Интернет может быть представлен в одном из двух цифровых форматов, который зависит от типа используемого протокола.

  • IPv4 (Internet Protocol v. 4) — адрес, записанный в 32-битном формате. Имеет вид четырех 8-битных чисел (минимум 0, максимум 255), которые разделены друг от друга точками. Пример: 172.16.255.2.
  • IPv6 (Internet Protocol v. 6) — адрес, записанный в 128-битном формате. Имеет вид 8 групп, в каждой из которых находится по 4 шестнадцатеричные цифры, отделенные друг от друга двоеточиями. При этом допустимо опускать ведущие нулевые группы, которые идут подряд, и заменять их двойным двоеточием, однако в одном адресе возможно только одно такое упрощение. Пример: 2001:0da8:11a4:08d6:1f84:8a3e:07a1:655d.

Структура IP-адреса

В общем случае IP-адрес состоит из двух частей (ID-номеров): сети и конкретного узла в ее пределах. Чтобы отличать их в полной записи, используют классы или маски.

Для доступа к Интернет необходимо, чтобы IP принадлежал к другому блоку или в пределах локальной сети существовал сервер, на котором происходит подмена внутреннего адреса на внешний. С этой целью используются прокси или NAT. Для доступа к Интернету адрес выдается провайдером или региональным интернет-регистратором.

Читайте также:  Зависает картинка и зацикливается звук

По умолчанию маршрутизатор может входить в несколько разных сетей. Каждый его порт имеет персональный IP-адрес. Соответственно, такой же принцип работы применим к конкретным компьютерам, которые могут поддерживать различное число сетевых связей.

Типы IP-адресов

В зависимости от способа использования

Внешний. Он же «белый», публичный или глобальный. Используется во время доступа в Интернет. Такой IP-адрес является уникальным и именно под ним устройство видят в сети. Так как количество таких идентификаторов ограничено, задействуют технологию NAT. Она позволяет транслировать сетевые IP-адреса из частных в публичные. Для этого применяются маршрутизаторы определенного типа.

По внешним IP-адресам многие интернет-сервисы отслеживают новых и вернувшихся пользователей. Это позволяет собирать статистику и делать аналитику, важную для продвижения сайта.

Внутренний. Он же «серый», локальный или частный IP-адрес источника. Не используется во время доступа в Интернет. Работает только в пределах локальной сети (домашней или предоставленной провайдером), и доступ к нему можно получить только другим ее участникам. Для этой цели по умолчанию зарезервированы следующие диапазоны частных IP-адресов:

  • 10.0.0.0 – 10.255.255.255;
  • 172.16.0.0 – 172.31.255.255;
  • 192.168.0.0 – 192.168.255.255.

Необходимо понимать, что не всегда внешний IP-адрес является постоянным. Наоборот, IP часто формируется заново от одного подключения к другому.

В зависимости от вариантов определения

Статические. Это IP-адреса, являющиеся неизмененными (постоянными). Они назначаются устройству автоматически в момент его присоединения к компьютерной сети или прописываются пользователем вручную. Статические адреса доступны для использования неограниченное время. Они могут выполнять функцию идентификатора только для одного сетевого узла. Также иногда используется понятие псевдостатических адресов, которые работают в пределах одной частной сети.

Динамические. Это те IP-адреса, которые выдаются устройству на время. Они автоматически присваиваются в момент подключения к сети и имеют ограниченный срок действия (от начала сессии до ее завершения). Динамические IP-адреса – своеобразный способ маскировки. Отследить человека, выходящего в Интернет с помощью такого адреса, сложно технически, в этом случае не обойтись без профессиональных инструментов.

Что дает статический IP-адрес

Статический IP-адрес полезен благодаря следующим возможностям:

  • привязке пользователя к конкретной сети;
  • инструментам для организации защитного канала передачи данных;
  • оптимизации работы с сетевыми серверами;
  • решению задач, связанных с информационными технологиями;
  • упрощенной работе в пиринговых сетях (например, с торрентами);
  • использованию онлайн-сервисов, требующих обязательного наличия статического IP-адреса.

Как узнать IP-адрес

Зачем знать свой реальный IP-адрес? Он понадобится вам для того, чтобы начать работать с некоторыми сервисами, требующими его указания вручную. Каким образом получить информацию об IP? Есть как минимум два способа:

  • специализированные онлайн-сервисы. Воспользоваться ими очень просто: достаточно зайти на них, и уже через несколько секунд в динамическом окне появится нужная информация;
  • провайдер. Вы можете узнать свой IP-адрес, обратившись в техподдержку поставщика интернет-услуг (как вариант, в «Личном кабинете» пользователя).

Помните, что вместе с IP-адресом другим устройствам (и, соответственно, лицам) будет доступна и иная информация, а именно: названия и данные провайдера интернет-услуг, название и версия установленной операционной системы и браузера, географическая привязка. Сторонние сервисы видят, используете ли вы прокси-сервер или средства защиты данных.

IPv4 – это четвертая версия протокола IP (Internet Protocol), которая на сегодняшний является основной и обслуживает большую часть сети Интернет. IPv4 протокол устанавливает правила функционирования компьютерных сетей по принципу обмена пакетами. Это протокол низкого уровня, который отвечает за установку соединения между узлами сети на основе IP-адресов.

IP-Адреса

Адреса узлов в сети, согласно протоколу IPv4 имеют длину 32 бит, что дает в совокупности 2 32 = 4 294 967 296 возможных адресов. Но не все адреса используются для глобального пространства (Интернет), часть адресов выделяется для специальных нужд, например, для организации локальных сетей, виртуальных сетевых интерфейсов, используются в тестовых целях, являются специальными адресами и так далее.

Читайте также:  Как отключить одно ядро

Представление IPv4 адресов

IPv4 адреса как правило записываются в виде четырех десятичных чисел от 0 до 255 разделенных символом "." (точка), например, минимальный возможный адрес – 0.0.0.0, максимальный – 255.255.255.255. Число от 0 до 255, как правило, в компьютерных системах требует для хранения 1 байт или 8 бит информации, таким образом 8 * 4 = 32 бита или 4 байта, что соответствует заявленной длине адреса.

Хотя могут быть использованы и другие представления, в зависимости от необходимости (на примере адреса 123.45.67.89):

десятичное: 123.45.67.89

двоичное: 01111011.00101101.01000011.01011001

шестнадцатеричное: 0x7B.0x2D.0x43.0x59

  • восьмеричное: 0173.0055.0103.0131
  • десятичное: 2066563929

    двоичное: 01111011001011010100001101011001

    шестнадцатеричное: 0x7B2D4359

  • восьмеричное: 017355103131
  • Бесклассовая адресация (CIDR)

    Изначально адресация в IP-сетях осуществлялась по классовому принципу (существовали классы, которые делили адресное пространство на большие блоки). Тем не менее данная схема оказалась непрактичной и сегодня в Интернет используется бесклассовая адресация, известная как Classless Inter-Domain Routing, или сокращенно CIDR.

    В целом, CIDR позволяет описывать блоки IP-адресов для Интернет-подсетей. Так, стандартной считается запись CIDR в виде IP-адреса, следующего за ним символа "/" и число, обозначающее битовую маску подсети, например, 12.13.14.0/24

    Число 24 в данном случае будет означать количество старших битов в маске подсети. Так как IP-адрес состоит из 32 бит, но маской являются старшие 24, это значит, что для всех возможных адресов в сети остается 32 – 24 = 8 бит. То есть 2 8 = 256 возможных. Или, если наша маска была бы 23 бита а не 24, то для адресов осталось бы 9 бит = 2 9 = 512 возможных, и напротив, если маска будет 25 бит, то для адресов останется 2 32-25 = 2 7 = 128 возможных. Таким образом, мы можем описывать сети, состоящие из различного количества доступных адресов. Кроме того, одна большая сеть может быть внутри опять раздроблена на несколько более мелких подсетей, те в свою очередь могут быть также разбиты на подсети и т.д.

    Следует отметить, что количество возможных узлов (хостов) в подсети всегда минимум на 2 меньше количества всех возможных адресов. Обусловлено это тем, что первый адрес резервируется, как идентификатор сети, а последний является широковещательным.

    Специальные IPv4 адреса

    Согласно характеристикам, определенным разными стандартами, относящимися к протоколу IPv4, существуют такие специальные адреса:

    Сеть (адрес) Описание Стандарт
    0.0.0.0/8 Источник адресов текущей сети RFC 5735
    10.0.0.0/8 Для организации частных сетей RFC 1918
    100.64.0.0/10 Для использования в сети провайдера RFC 6598
    127.0.0.0/8 Интерфейс коммутации внутри хоста RFC 5735
    169.254.0.0/16 Для автоматического конфигурирования (например, при отсутствии DHCP) RFC 3927
    172.16.0.0/12 Для организации частных сетей RFC 1918
    192.0.0.0/24 Для специального назначения (зарезервировано IETF) RFC 5735
    192.0.2.0/24 Тестовая сеть 1, для использования в качестве примеров в документации RFC 5735
    192.88.99.0/24 Для трансляций из IPv6 в IPv4 RFC 3068
    192.168.0.0/16 Для организации частных сетей RFC 1918
    198.18.0.0/15 Для тестирования производительности RFC 2544
    198.51.100.0/24 Тестовая сеть 2, для использования в качестве примеров в документации RFC 5737
    203.0.113.0/24 Тестовая сеть 3, для использования в качестве примеров в документации RFC 5737
    224.0.0.0/4 Для многоадресной рассылки RFC 5771
    240.0.0.0/4 Зарезервировано для возможных потребностей в будущем RFC 1700
    255.255.255.255 Широковещательный адрес RFC 919

    То есть, как видно, из всего адресного пространства IPv4 часть адресов используется для специальных нужд, а это значит, что для нужд реальных узлов сети свободных адресов остается даже меньше, чем теоретически определено IPv4 протоколом. На сегодняшний день адресное пространство IPv4 практически полностью исчерпано, все свободные адреса использованы для специальных нужд либо розданы различным организациям для нужд их сетей.

    Поэтому в последнее время осуществляется постепенный переход на новый протокол IPv6.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Adblock detector