Формула пути без начальной скорости

Равноускоренное движение

Равноускоренное движение – это движение, при котором вектор ускорения не меняется по модулю и направлению. Примеры такого движения: велосипед, который катится с горки; камень брошенный под углом к горизонту. Равномерное движение – частный случай равноускоренного движения с ускорением, равным нулю.

Рассмотрим случай свободного падения (тело брошено под уголом к горизонту) более подробно. Такое движение можно представить в виде суммы движений относительно вертикальной и горизонтальной осей.

В любой точке траектории на тело действует ускорение свободного падения g → , которое не меняется по величине и всегда направлено в одну сторону.

Вдоль оси X движение равномерное и прямолинейное, а вдоль оси Y – равноускоренное и прямолинейное. Будем рассматривать проекции векторов скорости и ускорения на оси.

Формулы для равноускоренного движения

Формула для скорости при равноускоренном движении:

Здесь v 0 – начальная скорость тела, a = c o n s t – ускорение.

Покажем на графике, что при равноускоренном движении зависимость v ( t ) имеет вид прямой линии.

​​​​​​​

Ускорение можно определить по углу наклона графика скорости. На рисунке выше модуль ускорения равен отношению сторон треугольника ABC.

a = v – v 0 t = B C A C

Чем больше угол β , тем больше наклон (крутизна) графика по отношению к оси времени. Соответственно, тем больше ускорение тела.

Для первого графика: v 0 = – 2 м с ; a = 0 , 5 м с 2 .

Для второго графика: v 0 = 3 м с ; a = – 1 3 м с 2 .

По данному графику можно также вычислить перемещение тела за время t . Как это сделать?

Выделим на графике малый отрезок времени ∆ t . Будем считать, что он настолько мал, что движение за время ∆ t можно считать равномерным движением со скоростью, равной скорости тела в середине промежутка ∆ t . Тогда, перемещение ∆ s за время ∆ t будет равно ∆ s = v ∆ t .

Разобьем все время t на бесконечно малые промежутки ∆ t . Перемещение s за время t равно площади трапеции O D E F .

s = O D + E F 2 O F = v 0 + v 2 t = 2 v 0 + ( v – v 0 ) 2 t .

Мы знаем, что v – v 0 = a t , поэтому окончательная формула для перемещения тела примет вид:

s = v 0 t + a t 2 2

Для того, чтобы найти координату тела в данный момент времени, нужно к начальной координате тела добавить перемещение. Изменение координаты в зависимости от времени выражает закон равноускоренного движения.

Закон равноускоренного движения

y = y 0 + v 0 t + a t 2 2 .

Еще одна распространенная задача кинематики, которая возникает при анализе равноускоренного движения – нахождение координаты при заданных значениях начальной и конечной скоростей и ускорения.

Исключая из записанных выше уравнений t и решая их, получаем:

s = v 2 – v 0 2 2 a .

По известным начальной скорости, ускорению и перемещению можно найти конечную скорость тела:

v = v 0 2 + 2 a s .

При v 0 = 0 s = v 2 2 a и v = 2 a s

Величины v , v 0 , a , y 0 , s , входящие в выражения, являются алгебраическими величинами. В зависимости от характера движения и направления координатных осей в условиях конкретной задачи они могут принимать как положительные, так и отрицательные значения.

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Прямолинейное равноускоренное движение

Рассмотрим некоторые особенности перемещения тела при прямолинейном равноускоренном движении без начальной скорости. Уравнение, которое описывает это движение, было выведено Галилеем в XVI веке. Необходимо помнить, что при прямолинейном равномерном или неравномерном движении без изменения направления скорости модуль перемещения совпадает по своему значению с пройденным путем. Формула выглядит следующим образом:

где – это ускорение.

Примеры равноускоренного движения без начальной скорости

Равноускоренное движение без начальной скорости – важный особый случай равноускоренного движения. Рассмотрим примеры:

1. Свободное падение без начальной скорости. Примером такого движения может быть падение сосульки в конце зимы (рис. 1).

Рис. 1. Падение сосульки

В тот момент, когда сосулька отрывается от крыши, ее начальная скорость равна нулю, после чего она движется равноускоренно, ведь свободное падение – это равноускоренное движение.

Читайте также:  При двойном щелчке открываются свойства

2. Старт любого движения. Например, автомобиль трогается с места и разгоняется (рис 2).

Рис. 2. Старт движения

Когда мы говорим, что время набора скорости 100 км/ч у автомобиля той или иной марки, например, 6 с., чаще всего мы говорим о движении равноускоренном без начальной скорости. Аналогично когда мы говорим о старте ракеты и т. д.

3. Особую актуальность равноускоренное движение имеет для разработчиков оружия. Ведь вылет любого снаряда или пули – это движение без начальной скорости, а во время движения в стволе пуля (снаряд) движется равноускоренно. Рассмотрим пример.

Длина автомата Калашникова –

Рис. 3. Иллюстрация к задаче

Для нахождения скорости вылета пули из ствола автомата воспользуемся выражением для перемещения при прямолинейном равноускоренном движении, если неизвестно время:

Движение осуществляется без начальной скорости, а значит,

Решение задачи записываем следующим образом с учетом единиц измерения в СИ:

Ответ: .

Равноускоренное движение без начальной скорости часто встречается и в природе, и в технике. Более того, умение работать с таким движением позволяет решать обратные задачи, когда начальная скорость существует, а конечная равна нулю.

Случай равномерного движения

Если , то уравнение, приведенное выше, превратится в уравнение:

Это уравнение дает возможность найти пройденный путь равномерного движения.

Случай движения без начальной скорости

Рассмотрим ситуацию, когда – начальная скорость равна нулю. Это значит, что движение начинается из состояния покоя. Тело покоилось, затем начинает приобретать и увеличивать скорость. Движение из состояния покоя будет записываться без начальной скорости:

Если S (проекцию перемещения) обозначить как разность начальной и конечной координаты (), то получится уравнение движения, которое дает возможность определить координату тела для любого момента времени:

Проекция ускорения может быть, как отрицательной, так и положительной, поэтому можно говорить о координате тела, которая может как увеличиваться, так и уменьшаться.

График зависимости скорости от времени

Так как равноускоренное движение без начальной скорости является особым случаем равноускоренного движения, рассмотрим график зависимости проекции скорости от времени для такого движения.

На рис. 4 представлен график зависимости проекции скорости от времени для равноускоренного движения без начальной скорости (график начинается в начале координат).

График устремлен вверх. Это говорит о том, что проекция ускорения положительна

Рис. 4. График зависимости проекции скорости от времени при равноускоренном движении без начальной скорости

Используя график, можно определить проекцию перемещения тела или пройденный путь. Для этого необходимо посчитать площадь фигуры, ограниченной графиком, координатными осями и перпендикуляром, опущенным на ось времени. То есть необходимо найти площадь прямоугольного треугольника (половина произведения катетов)

где – конечная скорость при равноускоренном движении без начальной скорости:

На рис. 5 представлен график зависимости проекции перемещения от времени двух тел для равноускоренного движения без начальной скорости.

Рис. 5 График зависимости проекции перемещения от времени двух тел для равноускоренного движения без начальной скорости

Начальная скорость обоих тел равна нулю, так как вершина параболы совпадает с началом координат:

У первого тела проекция ускорения положительна Пропорциональность пути квадрату времени

Например, если

Рис. 6. Пропорциональность пути квадрату времени

Перемещения за последовательные (равные) промежутки времени

Если за единицу времени выбираем некий промежуток, то полные расстояния, пройденные телом за последующие равные промежутки времени, будут относиться как квадраты целых чисел.

Читайте также:  Мини образ windows 7

Иными словами, перемещения, совершенные телом за каждую последующую секунду, будут относиться как нечетные числа:

Рис. 7. Перемещения за каждую секунду относятся как нечетные числа

Исследованные два очень важных заключения свойственны только прямолинейному равноускоренному движению без начальной скорости.

Рассмотренные закономерности на примере задачи

Задача. Автомобиль начинает двигаться от остановки, т. е. из состояния покоя, и за четвертую секунду своего движения проходит 7 м. Определите ускорение тела и мгновенную скорость через 6 с после начала движения (рис. 8).

Рис. 8. Иллюстрация к задаче

Ответ:

Решение: автомобиль начинает движение из состояния покоя, следовательно, путь, который проходит автомобиль, рассчитывается по формуле: – расстояние, которое автомобиль прошел за четвертую секунду своего движения. Его можно выразить как разность полного пути, пройденного телом за 4 с, и пути, пройденного телом за 3 с (рис. 9).

Рис. 9. Разность полного пути, пройденного телом за 4 с, и пути, пройденного телом за 3 с

Решив уравнение, получаем ускорение .

Чтобы определить мгновенную скорость, т. е. скорость в конце шестой секунды, следует ускорение умножить на время, т. е. на 6 с, во время которых тело которое продолжало двигаться.

Уравнения, которые сегодня мы использовали в уроке, впервые были исследованы Галилео Галилеем. На следующем уроке мы рассмотрим, как именно были проведены эти опыты.

  1. Кикоин И.К., Кикоин А.К. Физика: Учебник для 9 класса средней школы. – М.: «Просвещение».
  2. Перышкин А.В., Гутник Е.М., Физика. 9 кл.: учебник для общеобразоват. учреждений/А.В. Перышкин, Е.М. Гутник. – 14-е изд., стереотип. – М.: Дрофа, 2009. – 300 с.
  3. Соколович Ю.А., Богданова Г.С. Физика: Справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «phscs.ru» (Источник)
  2. Интернет-портал «fizikaklass.ru» (Источник)
  3. Интернет-портал «sernam.ru» (Источник)
  1. Запишите формулу, которая используется для определения перемещения тела при его равноускоренном движении из состояния покоя.
  2. Если увеличить время движения тела из состояния покоя в 5 раз, во сколько увеличится модуль вектора перемещения тела?
  3. Автобус начинает свое движение от остановки и за 5 с своего движения проходит 15 м. Определите ускорение автобуса через 8 с после начала движения.

Автор:– Начнем обсуждение самого простого неравномерного движения – движения с постоянным ускорением. Такое движение называют равноускоренным.

График зависимости V(t) для этого случая показан на рис.1.2.1. Промежуток времени Δt в формуле (1.4) можно брать любой. Отношение ΔV/Δt от этого не зависит. Тогда ΔV=аΔt. Применяя эту формулу к промежутку от tо = 0 до некоторого момента t, можно написать выражение для скорости:

Здесь V – значение скорости при tо = 0. Если направления скорости и ускорения противоположны, то говорят о равнозамедленном движении (рис. 1.2.2).

При равнозамедленном движении аналогично получаем

Разберём вывод формулы перемещения тела при равноускоренном движении. Заметим, что в этом случае перемещение и пройденный путь – одно и тоже число.

Рассмотрим малый промежуток времени Δt. Из определения средней скорости Vcp = ΔS/Δt можно найти пройденный путь ΔS = VcpΔt. На рисунке видно, что путь ΔS численно равен площади прямоугольника с шириной Δt и высотой Vcp. Если промежуток времени Δt выбрать достаточно малым, средняя скорость на интервале Δt совпадет с мгновенной скоростью в средней точке. ΔS ≈ VΔt. Это соотношение тем точнее, чем меньше Δt. Разбивая полное время движения на такие малые интервалы и учитывая, что полный путь S складывается из путей, пройденных за эти интервалы, можно убедиться, что на графике скорости он численно равен площади трапеции:

подставляя (1.5), получим для равноускоренного движения:

Для равнозамедленного движения перемещение L вычисляется так:

Пусть график скорости имеет вид, изображенный на рис. 1.2.4. Нарисуйте качественно синхронные графики пути и ускорения от времени.

Студент: – Мне не приходилось встречаться с понятием «синхронные графики», я также не очень представляю, что значит «нарисовать качественно».

Читайте также:  Sony blu ray disc

Автор: – Синхронные графики имеют одинаковые масштабы по оси абсцисс, на которой отложено время. Расположены графики один под другим. Удобны синхронные графики для сопоставления сразу нескольких параметров в один момент времени. В этой задаче мы будем изображать движение качественно, т. е. без учета конкретных числовых значений. Для нас вполне достаточно установить: убывает функция или возрастает, какой вид она имеет, есть ли у нее разрывы или изломы и т. д. Думаю, для начала нам следует рассуждать вместе.

Разделим все время движения на три промежутка ОВ, BD, DE. Скажите, какой характер носит движение на каждом из них и по какой формуле будем вычислять пройденный путь?

Студент: – На участке ОВ тело двигалось равноускоренно с нулевой начальной скоростью, поэтому формула для пути имеет вид:

Ускорение можно найти, разделив изменение скорости, т.е. длину АВ, на промежуток времени ОВ.

Автор: – Хорошо. Теперь рассмотрите другие временные участки – ВD и .

Студент:– На участке ВD тело движется равномерно со скоростью V, приобретенной к концу участка ОВ. Формула пути – S = Vt. Ускорения нет.

Автор: – Следует уточнить, что равномерное движение началось не в начальный момент времени, а в какой-то t1. К этому времени тело уже прошло путь at1 2 /2. Кроме того, за начало отсчета времени необходимо взять момент t1. Зависимость пути от времени имеет следующий вид:

Учитывая это пояснение, напишите формулу для пути на участке DE.

Студент:– На последнем участке движение равнозамедленное. Буду рассуждать так. До момента времени t2 тело уже прошло расстояние S2 = at1 2 /2 + V(t2– t1 ).

К нему надо добавить выражение для равнозамедленного случая, учитывая, что время отсчитывается от значения t2 получаем пройденный путь, за время t – t2:

Предвижу вопрос о том, как найти ускорение a1. Оно равно СD/DE. В итоге получаем путь, пройденный за время t>t2

Автор: – Верно. Переходите к построению графиков.

Студент:– На первом участке имеем параболу с ветвями, направленными вверх. На втором – прямую, на последнем – тоже параболу, но с ветвями вниз.

Автор:– Ваш рисунок имеет неточности. График пути не имеет изломов, т. е. параболы следует плавно сопрягать с прямой. Мы уже говорили, что скорость определяется тангенсом угла наклона касательной. По Вашему чертежу получается, что в момент t1 скорость имеет сразу два значения. Если строить касательную слева, то скорость будет численно равна tgα, а если подходить к точке справа, то скорость равна tgβ. Но в нашем случае скорость – непрерывная функция. Противоречие снимается, если график построить так.

Есть еще одно полезное соотношение между S, a, V и V. Будем предполагать, что движение происходит в одну сторону. В этом случае перемещение тела от начальной точки совпадает с пройденным путём. Используя (1.5), выразите время t и исключите его из равенства (1.6). Так Вы получите эту формулу.

Студент:V(t) = V + at , значит,

S = Vt + at 2 /2 = V(V– V )/a + a[(V– V )/a] 2 = .

S= . (1.6а)

Однажды во время обучения в Геттингене Нильс Бор плохо подготовился к коллоквиуму, и его выступление оказалось слабым. Бор, однако, не пал духом и в заключение с улыбкой сказал:

– Я выслушал здесь столько плохих выступлений, что прошу рассматривать моё как месть.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент – человек, постоянно откладывающий неизбежность. 10825 – | 7386 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

“>

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector