Формула бернулли в excel

Лабораторная работа №3-4

Схема повторных независимых испытаний

Распределение Бернулли, Пуассона, Лапласа

Цель данной работы – изучить задачу теории вероятностей о повторении однородных независимых испытаний. Для небольшого числа испытаний n

В строках 5 и 6 задаем значения параметров n = 10, p = 0,1. В следующих строках вычисляем q = 1 – p, M = S m Pn(m), D = S m 2 Pn(m) – M^2, M-3Sm = M – 3*КОРЕНЬ(D), M+3Sm = M + 3*КОРЕНЬ(D). Последние 4 формулы можно набрать позже, когда будет заполнен диапазон B14:B24, содержащий значения Pn(m). Отметим полезный прием: в столбце А записываем текст и сдвигаем его вправо, а в столбце В – вычисляем числовое значение и сдвигаем его влево. Получается понятный комментарий к выполненным действиям. Лист Excel, помимо всего прочего, является отчетным документом, поэтому не стоит экономить на комментариях и заголовках. Из информации в строках 8 – 11 первого блока, видно, что, действительно, M = np = 10´0,1 = 1; D = npq = 10´0,1´0,9 = 0,9; и что все вероятные значения m не превзойдут 4.

Значения Pn(m) удобно вычислять по реккурентной формуле (эта формула приведена в строке 3 рабочего листа). Начальное значение Pn(0) = q n вычисляем в ячейке В14. При наборе реккурентной формулы в ячейке В15 следует зафиксировать (знаками $) неизменяемые значения n, p, q. Далее формула копируется ниже до ячейки В24.

Заполнив первый блок, копируем его несколько раз вправо и в новых блоках заменяем значение параметра p на p = 0,3; p = 0,5; p = 0,7; p = 0,9. Все автоматически пересчитывается. В блоках серым фоном выделены значения Pn(m), которые признаны значимыми по правилу «3-х сигм».

Теперь строим графики. Выделяем значения m вместе с заголовком в ячейке А13, далее при нажатой клавише Ctrl выделяем мышкой значения Pn(m) для p = 0,1; 0,3; 0,5; 0,7; 0,9. Выделять диапазоны надо вместе с заголовками в строке 13, тогда эти заголовки автоматически будут отображены в легенде (пояснениях к каждой линии на графике). Вызываем Мастер диаграмм, выбираем тип диаграммы – точечная, легенда – внизу, линии сетки – основные, заголовок: “Распределение Бернулли при разных p (n=10)”. В результате получаем следующий график, который почти не требует дополнительного форматирования:

Из этого графика видно, как меняется асимметрия распределения при увеличении параметра p: при p = 0,5 распределение симметричное, при p 0,5 – скошено вправо (отрицательная асимметрия).

Как уже указывалось выше, заголовки из строки 13 автоматически переносятся в легенду диаграммы. Но тогда хотелось бы, чтобы они автоматически корректировались при изменении параметра p. Поэтому в качестве заголовка в ячейке В13 набрана формула ="р="&ТЕКСТ(B9;"0,0"). Функция ТЕКСТ(Число;Формат) переводит в символьную форму значение p из ячейки В9; в тексте заголовка это число будет округлено до одного знака после запятой. Остальные заголовки в строке 13 корректируются автоматически при копировании.

Теперь переходим к изучению зависимости распределения Бернулли от второго параметра n. Скопируем все 5 готовых блоков вправо, начиная со столбца K, и заменим в новых блоках значения параметров: n = 10, 20, 30, 40, 50 и p = 0,1 (для всех новых блоков). Естественно, новые таблицы надо продлить вниз до строки 64 (они теперь будут иметь разную длину). Ненужную информацию можно скрыть с помощью условного форматирования. Так, таблица для n = 10 фактически обрывается на строке 24, поэтому можно сделать так, чтобы дальнейшие значения m и нулевые значения Pn(m) выводились серым цветом на белом фоне (тогда они почти не будут видны). Условный формат для колонки m задаем по условию:

Читайте также:  Viega инсталляция для унитаза отзывы

Обратите внимание, что в ссылке на ячейку L8 зафиксирован только номер строки. Для колонки Pn(m) с заголовком n=10 условие будет более простое: значение равно 0 . При копировании отформатированного блока, копируются также все условные форматы.

Наконец, надо заменить заголовки в строке 13 на формулы ="n="&ТЕКСТ(L8;"0").

K L M N O P Q R S T
n = n = n = n = n =
p = 0,1 p = 0,1 p = 0,1 p = 0,1 p = 0,1
q = 0,9 q = 0,9 q = 0,9 q = 0,9 q = 0,9
M = M = M = M = M =
D = 0,9 D = 1,8 D = 2,7 D = 3,6 D = 4,5
M-3Sm= -1,84605 M-3Sm= -2,02492 M-3Sm= -1,9295 M-3Sm= -1,6921 M-3Sm= -1,36396
M+3Sm= 3,84605 M+3Sm= 6,024922 M+3Sm= 7,929503 M+3Sm= 9,6921 M+3Sm= 11,36396
m n=10 m n=20 m n=30 m n=40 m n=50
0,348678 0,121577 0,042391 0,014781 0,005154
0,387420 0,270170 0,141304 0,065693 0,028632
0,193710 0,285180 0,227656 0,142334 0,077943
0,057396 0,190120 0,236088 0,200323 0,138565
0,01116 0,089779 0,177066 0,205887 0,180905
0,001488 0,031921 0,102305 0,164710 0,184925
0,000138 0,008867 0,047363 0,106756 0,154104
8,75E-06 0,00197 0,018043 0,057614 0,107628
3,65E-07 0,000356 0,005764 0,026407 0,064278
9E-09 5,27E-05 0,001565 0,010432 0,033329
1E-10 6,44E-06 0,000365 0,003593 0,015183
6,51E-07 7,38E-05 0,001089 0,006135
5,42E-08 1,3E-05 0,000292 0,002215
3,71E-09 2E-06 7E-05 0,000719
2,06E-10 2,69E-07 1,5E-05 0,000211
9,15E-12 3,19E-08 2,89E-06 5,63E-05
3,18E-13 3,33E-09 5,01E-07 1,37E-05
8,31E-15 3,04E-10 7,86E-08 3,04E-06
1,54E-16 2,44E-11 1,12E-08 6,2E-07
1,8E-18 1,71E-12 1,44E-09 1,16E-07
1E-20 1,05E-13 1,68E-10 2E-08

Интересно, что хотя таблицы продолжаются до строки 64, фактически (согласно правилу "3-х сигм") их можно было оборвать на строке 25 (это отразится только на значениях M и D в строках 8, 9). Все готово для построения нового графика, из которого будет видно, как с увеличением n распределение Бернулли приближается к некой стандартной форме – к распределению Лапласа, или к, так называемому, нормальному закону распределения Гаусса.

Считается, что при n ³ 30 распределение уже практически нормальное. Этот вопрос еще будет обсуждаться ниже при изучении распределения Лапласа. Там же рассмотрим применение кумуляты.

Очень часто при работе в Excel необходимо использовать вычисления вероятности появления некоторого события. Для этого используется статистическая функция ВЕРОЯТНОСТЬ.

Примеры использования функции вероятность для расчетов в Excel

Стоит отметить, что используются часто в Excel и другие статистические функции, к примеру:

Функция выполняет вычисление вероятности того, что значения с интервала находятся в заданных пределах. В случае, если верхний предел не будет задан, то будет возвращена вероятность того, что значения аргумента x_интервал будет равно значению аргумента под названием нижний_предел.

Вычисление процента вероятности события в Excel

Пример 1. Дана таблица диапазона числовых значений, а также вероятностей, которые им соответствуют:

Необходимо при использовании данной статистической функции вычислить вероятность события, что значение с указанного интервала входит в интервал [1;4].

Для этого введем функцию со следующими аргументами:

  • х_интервал – это начальные данные (0, …, 4);
  • интервал вероятностей является множеством вероятностей для начальных данных (0,15; 0,1; 0,15; 0,2; 0,4);
  • нижний предел равен значению 1;
  • верхний предел равен 4.

В результате выполненных вычислений получим:

Пример 2. В условии предыдущего примера нужно вычислить вероятность события «значение х равно 4».

Введем в ячейку С3 введем функцию с такими аргументами:

  • х_интервал – начальные параметры (0, …, 4);
  • интервал вероятностей – совокупность вероятностей для параметров (0,1; 0,15; 0,2; 0,15; 0,4);
  • нижний предел – 4;

В данном примере верхний предел не указан, поскольку необходимо конкретное значение вероятности, а именно для значения 4.

Читайте также:  Пропали языки с панели задач виндовс 7

Функция ВЕРОЯТНОСТЬ при нескольких условиях интервалов

Пример 3. В условии примера 1 нужно вычислить вероятность того, что значения интервала [0; 4] будут находится находятся внутри интервалов [0;1] и [3;4].

Описание формул аналогичные предыдущим примерам.

В результате выполненных вычислений получим:

Таким образом составив формулу можно с помощью данной функции вычислить процент вероятности при нескольких условиях.

В этой статье я расскажу о том, как решать задачи на применение формулы Бернулли в Эксель. Разберем формулу, типовые задачи – решим их вручную и в Excel. Вы разберетесь со схемой независимых ипытаний и сможете использовать расчетный файл эксель) для решения своих задач. Удачи!

Схема независимых испытаний

В общем виде схема повторных независимых испытаний записывается в виде задачи:

Пусть производится $n$ опытов, вероятность наступления события $A$ в каждом из которых (вероятность успеха) равна $p$, вероятность ненаступления (неуспеха) – соответственно $q=1-p$. Найти вероятность, что событие $A$ наступит в точности $k$ раз в $n$ опытах.

Эта вероятность вычисляется по формуле Бернулли:

$$ P_n(k)=C_n^k cdot p^k cdot (1-p)^=C_n^k cdot p^k cdot q^. qquad(1) $$

Данная схема описывает большой пласт задач по теории вероятностей (от игры в лотерею до испытания приборов на надежность), главное, выделить несколько характерных моментов:

  • Опыт повторяется в одинаковых условиях несколько раз. Например, кубик кидается 5 раз, монета подбрасывается 10 раз, проверяется 20 деталей из одной партии, покупается 8 однотипных лотерейных билетов.
  • Вероятность наступления события в каждом опыте одинакова. Этот пункт связан с предыдущим, рассматриваются детали, которые могут оказаться с одинаковой вероятностью бракованными или билеты, которые выигрывают с одной и той же вероятностью.
  • События в каждом опыте наступают или нет независимо от результатов предыдущих опытов. Кубик падает случайно вне зависимости от того, как упал предыдущий и т.п.

Если эти условия выполнены – мы в условиях схемы Бернулли и можем применять одноименную формулу. Если нет – ищем дальше, ведь классов задач в теории вероятностей существенно больше (и о решении некоторых написано тут): классическая и геометрическая вероятность, формула полной вероятности, сложение и умножение вероятностей, условная вероятность и т.д.

Подробнее про формулу Бернулли и примеры ее применения можно почитать в онлайн-учебнике. Мы же перейдем к вычислению с помощью программы MS Excel.

Формула Бернулли в Эксель

Для вычислений с помощью формулы Бернулли в Excel есть специальная функция =БИНОМ.РАСП() , выдающая определенную вероятность биномиального распределения.

Чтобы найти вероятность $P_n(k)$ в формуле (1) используйте следующий текст =БИНОМ.РАСП($k$;$n$;$p$;0) .

Покажем на примере. На листе подкрашены ячейки (серые), куда можно ввести параметры задачи $n, k, p$ и получить искомую вероятность (текст полностью виден в строке формул вверху).

Пример применения формулы на конкретных задачах мы рассмотрим ниже, а пока введем в лист Excel другие нужные формулы, которые пригодятся в решении:

Выше на скриншоте введены формулы для вычисления следующих вероятностей (помимо самих формул для Excel ниже записаны и исходные формулы теории вероятностей):

  • Событие произойдет в точности $k$ раз из $n$:
    =БИНОМ.РАСП(k;n;p;0)
    $$P_n(k)=C_n^k cdot p^k cdot q^$$
  • Событие произойдет от $k_1$ до $k_2$ раз:
    =БИНОМ.РАСП(k_2;n;p;1) – БИНОМ.РАСП(k_1;n;p;1) + БИНОМ.РАСП(k_1;n;p;0)
    $$P_n(k_1le X le k_2)=sum_^ C_n^i cdot p^i cdot q^$$
  • Событие произойдет не более $k_3$ раз:
    =БИНОМ.РАСП(k_3;n;p;1)
    $$P_n(0le X le k_3)=sum_^ C_n^i cdot p^i cdot q^$$
  • Событие произойдет не менее $k_4$ раз:
    =1 – БИНОМ.РАСП(k_4;n;p;1) + БИНОМ.РАСП(k_4;n;p;0)
    $$P_n(k_4le X le n)=sum_^ C_n^i cdot p^i cdot q^$$
  • Событие произойдет хотя бы один раз:
    =1-БИНОМ.РАСП(0;n;p;0)
    $$P_n( X ge 1)=1-P_n(0)=1-q^$$
  • Наивероятнейшее число наступлений события $m$:
    =ОКРУГЛВВЕРХ(n*p-q;0)
    $$np-q le m le np+p$$
Читайте также:  Работа в эксель создание таблицы

Вы видите, что в задачах, где нужно складывать несколько вероятностей, мы уже используем функцию вида =БИНОМ.РАСП(k;n;p;1) – так называемая интегральная функция вероятности, которая дает сумму всех вероятностей от 0 до $k$ включительно.

Примеры решений задач

Рассмотрим решение типовых задач.

Пример 1. Произвели 7 выстрелов. Вероятность попадания при одном выстреле равна 0,75. Найти вероятность того, что при этом будет ровно 5 попаданий; от 6 до 7 попаданий в цель.

Решение. Получаем, что в задаче идет речь о повторных независимых испытаниях (выстрелах), всего их $n=7$, вероятность попадания при каждом одинакова и равна $p=0,75$, вероятность промаха $q=1-p=1-0,75=0,25$. Нужно найти, что будет ровно $k=5$ попаданий. Подставляем все в формулу (1) и получаем:

$$ P_7(5)=C_<7>^5 cdot 0,75^5 cdot 0,25^2 = 21cdot 0,75^5 cdot 0,25^2= 0,31146. $$

Для вероятности 6 или 7 попаданий суммируем:

$$ P_7(6)+P_7(7)=C_<7>^6 cdot 0,75^6 cdot 0,25^1+C_<7>^7 cdot 0,75^7 cdot 0,25^0= \ = 7cdot 0,75^6 cdot 0,25+0,75^7=0,44495. $$

А вот это решение в файле эксель:

Пример 2. В семье десять детей. Считая вероятности рождения мальчика и девочки равными между собой, определить вероятность того, что в данной семье:
1. Ровно 2 мальчика
2. От 4 до 5 мальчиков
3. Не более 2 мальчиков
4. Не менее 7 мальчиков
5. Хотя бы один мальчик
Каково наиболее вероятное число мальчиков и девочек в семье?

Решение. Сначала запишем данные задачи: $n=10$ (число детей), $p=0,5$ (вероятность рождения мальчика). Формула Бернулли принимает вид: $$P_<10>(k)=C_<10>^k cdot 0,5^kcdot 0,5^<10-k>=C_<10>^k cdot 0,5^<10>$$ Приступим к вычислениям:

$$1. P_<10>(2)=C_<10>^2 cdot 0,5^ <10>= frac<10!><2!8!>cdot 0,5^ <10>approx 0,044.$$ $$2. P_<10>(4)+P_<10>(5)=C_<10>^4 cdot 0,5^ <10>+ C_<10>^5 cdot 0,5^<10>=left( frac<10!> <4!6!>+ frac<10!> <5!5!>
ight)cdot 0,5^ <10>approx 0,451.$$ $$3. P_<10>(0)+P_<10>(1)+P_<10>(2)=C_<10>^0 cdot 0,5^ <10>+ C_<10>^1 cdot 0,5^<10>+ C_<10>^2 cdot 0,5^<10>=left( 1+10+ frac<10!> <2!8!>
ight)cdot 0,5^ <10>approx 0,055.$$ $$4. P_<10>(7)+P_<10>(8)+P_<10>(9)+P_<10>(10)=\ = C_<10>^7 cdot 0,5^ <10>+ C_<10>^8 cdot 0,5^<10>+ C_<10>^9 cdot 0,5^<10>+ C_<10>^10 cdot 0,5^ <10>=\=left(frac<10!><3!7!>+ frac<10!> <2!8!>+ 10 +1
ight)cdot 0,5^ <10>approx 0,172.$$ $$5. P_<10>(ge 1)=1-P_<10>(0)=1-C_<10>^0 cdot 0,5^ <10>= 1- 0,5^ <10>approx 0,999.$$

Наивероятнейшее число мальчиков найдем из неравенства:

$$ 10 cdot 0,5 – 0,5 le m le 10 cdot 0,5 + 0,5, \ 4,5 le m le 5,5,\ m=5. $$

Наивероятнейшее число – это 5 мальчиков и соответственно 5 девочек (что очевидно и по здравому смыслу, раз их рождения вероятность одинакова).

Проведем эти же расчеты в нашем шаблоне эксель, вводя данные задачи в серые ячейки:

Видно, что ответы совпадают.

Пример 3. Вероятность выигрыша по одному лотерейному билету равна 0,3. Куплено 8 билетов. Найти вероятность того, что а) хотя бы один билет выигрышный; б) менее трех билетов выигрышные. Какое наиболее вероятное число выигрышных билетов?

Решение. Полное решение этой задачи можно найти тут, а мы сразу введем данные в Эксель и получим ответы: а) 0,94235; б) 0,55177; в) 2 билета. И они совпадут (с точностью до округления) с ответами ручного решения.

Решайте свои задачи и советуйте наш сайт друзьям. Удачи!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector