Флуоресцентные лампы что это такое

Содержание:

В современный период флуоресцентные лампы получили широкое применение среди других видов осветительных ламп. Уже в 70-х годах они начали заменять обычные лампы накаливания на производстве и в различных учреждениях. Они имеют достаточно высокую эффективность, качественно освещают помещения и территории.

Флуоресцентная лампа – это источник света, получаемого от свечения разрядов газа. Она состоит из стеклянной трубки, на внутренней поверхности которой нанесен слой люминофора. На торцах трубки находятся электроды в виде спиралей. В полость трубки закачан инертный газ и пары ртути. Под напряжением на электродах в лампе образуется разряд газа, ток проходит по парам ртути, возникает свечение.

Технология изготовления этих ламп постоянно совершенствуется, уменьшаются размеры, повышается яркость и качество света. С 2000-х годов такие лампы используются в домашнем хозяйстве. В настоящее время лампы получили название люминесцентных. По сути и принципу действия это одни и те же лампы. Хотя старое название также используется, поэтому в разной литературе они называются по-разному.

Типы флуоресцентных ламп и их устройство

У нас в стране энергосберегающими лампами называют (люминесцентные) флуоресцентные лампы для бытового применения. Многие не знают, что лампы в виде спирали, которые используются в быту, и называются энергосберегающими, являются по принципу действия флуоресцентными лампами. Энергоэффективность приборов освещения делится на два класса: А и В.

Наиболее правильной будет классифицировать флуоресцентные лампы по различным признакам. Учитывая технологию производства и область применения, выделяют следующие типы ламп:
  • Стандартные флуоресцентные лампы диаметром 26 мм, имеющие несколько слоев люминофора.
  • Флуоресцентные лампы компактных размеров, имеющие трубку различной конфигурации, также покрытой люминофором.
  • Лампы специального назначения.
Также флуоресцентные лампы делятся по другим признакам:
  • Мощность энергии потребления.
  • Световой поток.
  • Цветовая температура.
  • Индекс цветопередачи.
  • Длина лампы.
  • Размер цоколя.
  • Вид подключения.
  • Размещение пускателя. Размещается в корпусе лампы или в светильнике.

Основным элементом флуоресцентных ламп являются пары ртути в малой концентрации. При прохождении через них электрического тока образуется ультрафиолетовое излучение. Люминофор – это химическое вещество, находящееся на внутренней поверхности трубки лампы, преобразующее ультрафиолетовое излучение в видимый для глаз свет. Качество света зависит от состава люминофора.

Принцип действия

При включении питания в стартере образуется небольшой тлеющий разряд, под действием него нагреваются электроды.

Один из электродов изготовлен из биметаллического материала. При нагревании он изгибается и прикасается к другому электроду. В итоге в цепи резко увеличивается электрический ток, разряд в стартере прекращается. Повышающийся ток нагревает электроды флуоресцентной лампы. они начинают выпускать электроны. Это является подготовкой к запуску работы лампы.

Электроды в стартере в это время охлаждаются, биметаллический элемент выправляется, и между электродами появляется зазор. Сила тока в схеме значительно снижается. В дросселе появляется мгновенное повышенное напряжение, которое называется напряжением самоиндукции. Оно препятствует снижению этого тока. При суммировании с напряжением цепи, напряжение самоиндукции образует в лампе короткий импульс напряжения, которого хватает для образования электроразряда в газе.

Сначала разряд возникает в аргоне, а затем, когда газ разогреется, в ртутных парах. Во время свечения лампы напряжение на электродах, а значит и электродах стартера, подключенного к лампе по параллельной схеме, меньше напряжения цепи на размер ЭДС самоиндукции, появляющейся в дросселе при загорании лампы.

Поэтому, дроссель предназначен не только для запуска люминесцентной лампы, но и в создании препятствия неограниченного повышения тока разряда. Если бы дросселя не было, то при увеличении тока лампа разрушилась бы, либо вышли из строя предохранители сети питания квартиры.

Конденсатор С1 в схеме стартера предназначен для подавления помех радиочастотных волн. А емкость С2 служит для увеличения коэффициента мощности.

Особенности и преимущества флуоресцентных ламп

Ультрафиолетовое излучение заставляет светиться люминофор видимым для глаза человека светом. Стекло колбы лампы не дает выхода вредному ультрафиолетовому излучению. Этим оно защищает наши глаза.

Бактерицидные лампы имеют в своей конструкции кварцевое стекло, которое легко пропускает ультрафиолет. Такие лампы применяются для дезинфекции и кварцевания помещений в медицине. Большое распространение имеют сегодня лампы с амальгамами кадмия и другими элементами. В них давление ртути снижено, вследствие чего расширяется интервал температур отдачи света до 60 градусов. Для чистой ртути эта величина составляет 25 градусов.

При возрастании температуры воздуха больше 25 градусов, температура стенок лампы и давление паров ртути повышается, а поток света снижается. Еще сильнее уменьшается поток света при снижении температуры и давления паров. При этом запуск ламп затрудняется. Поэтому в холодное время применение флуоресцентных ламп ограничено.

Чтобы решить эту проблему, разработана конструкция безртутных люминесцентных ламп, в которых давление инертного газа низкое. В них слой люминофора начинает светиться от излучения с величиной длины волны 58-147 нанометров. Так как давление газа в таких лампах не зависит от температуры воздуха, то поток света не изменяется. Сегодня существуют лампы нового поколения Т5. Они более компактны, в них используется высокочастотный пускатель.

Чем больше длина лампы, тем сильнее поток света. Это происходит из-за уменьшения анодно-катодных потер в потоке света. Поэтому выгоднее применить одну лампочку на 36 ватт, чем 2 лампы по 18 ватт. Срок действия у таких ламп ограничивается распылением катодов. Также снижают срок службы колебания напряжения сети питания и частые переключения.

Достоинства

Флуоресцентные лампы нашли широкое применение в связи с тем, что они обладают значительными достоинствами, по сравнению с простыми лампочками накаливания.

  • Повышенная эффективность. Световая отдача выше в 10 раз, чем у лампнакаливания, КПД 25% по сравнению с лампами накаливания – 7%.
  • Большой срок работы – до 20000 часов.
Недостатки
  • Требуется подключение балласта для нормальной работы лампы.
  • Устойчивая работа лампы зависит от температуры воздуха.

Излучение света оказывает на людей значительное воздействие, как психологическое, так и физиологическое, но чаще благотворное. Самым полезным считается дневной свет. Он оказывает влияние на процессы жизни человека, обмен веществ, развитие в физическом плане и т.д. Искусственное освещение отличается от дневного света. Лампы накаливания излучают желтый и красный спектр света, ультрафиолет отсутствует, поэтому они считаются теплыми источниками света.

Еще одним достоинством люминесцентных ламп является возможность образования света разного спектра, от теплого до дневного. Это делает богаче цветовую палитру домашнего быта. Для разных областей применения рекомендуют свои цвета.

Как изготавливают флуоресцентные лампы

Эта лампа была изобретена в 1909 году. До сих пор ее конструкция принципиально не изменилась. Их изготовление является сложным процессом. Нужна механическая хореография, которая включает в себя сварку, и плавку, а также изгибы, пайка, окраска.

Технологический процесс начинается с трубок из стекла. До этого их тщательно подвергают промывке в теплой воде для удаления примесей и грязи. Далее трубкам придается специфическая форма. Их подвергают нагреву в течение половины минуты, потом быстро сгибают по шаблону. Автоматический станок изгибает трубки со скоростью 14 штук в минуту.

Читайте также:  Epson epl 5200 драйвер

Изогнутые трубки идут в камеру, в которой наносится небольшой слой фосфора на внутреннюю поверхность. Фосфор образует световой поток, преобразуя ультрафиолет, образующийся во время ионизации паров ртути. С краев трубки убирают излишки фосфора, для последующей пайки.

Теперь нужно установить компоненты электросхемы. Монтажным автоматом изготавливается катодное устройство. По ним будет поступать ток. Проводникам придается нужная форма, затем их нагревают до определенного значения температуры. Это является подготовкой к следующему этапу, потому что важно не дать катодному покрытию перейти на штырьки.

Нити лампы вставляют в опору. Эмиссионное вещество в этом процессе имеет большое значение. Она испускает электроны, участвующие в образовании светового потока. На следующем этапе соединяют подставку и стеклянную трубку. Пайка производится при высокой температуре.

Теперь остается самый важный процесс, во время которого выкачивают воздух из трубки и заполняют ее инертным газом. На этой же операции в трубку впрыскивается капля ртути, которая очень важна для образования света.

Следующий этап – это размещение проводов, чтобы установить крышку, закрывающую трубку. Крышка создает электрический контакт, и надевается на конец трубки. Она должна иметь абсолютную герметичность, чтобы не было утечки. Теперь лампа готова.

Каждый образец лампы ставят на испытательное колесо для проверки качества.

После тщательной проверки флуоресцентные лампы перевозят на упаковку. Эта операция требует необходимой точности и ловкости. С помощью фосфора, ртути и паяльных ламп изготавливается устройство, не изменившееся за последний век.

В современный период флуоресцентные лампы получили широкое применение среди других видов осветительных ламп. Уже в 70-х годах они начали заменять обычные лампы накаливания на производстве и в различных учреждениях. Они имеют достаточно высокую эффективность, качественно освещают помещения и территории.

Флуоресцентная лампа – это источник света, получаемого от свечения разрядов газа. Она состоит из стеклянной трубки, на внутренней поверхности которой нанесен слой люминофора. На торцах трубки находятся электроды в виде спиралей. В полость трубки закачан инертный газ и пары ртути. Под напряжением на электродах в лампе образуется разряд газа, ток проходит по парам ртути, возникает свечение.

Технология изготовления этих ламп постоянно совершенствуется, уменьшаются размеры, повышается яркость и качество света. С 2000-х годов такие лампы используются в домашнем хозяйстве. В настоящее время лампы получили название люминесцентных. По сути и принципу действия это одни и те же лампы. Хотя старое название также используется, поэтому в разной литературе они называются по-разному.

Типы флуоресцентных ламп и их устройство

У нас в стране энергосберегающими лампами называют (люминесцентные) флуоресцентные лампы для бытового применения. Многие не знают, что лампы в виде спирали, которые используются в быту, и называются энергосберегающими, являются по принципу действия флуоресцентными лампами. Энергоэффективность приборов освещения делится на два класса: А и В.

Наиболее правильной будет классифицировать флуоресцентные лампы по различным признакам. Учитывая технологию производства и область применения, выделяют следующие типы ламп:
  • Стандартные флуоресцентные лампы диаметром 26 мм, имеющие несколько слоев люминофора.
  • Флуоресцентные лампы компактных размеров, имеющие трубку различной конфигурации, также покрытой люминофором.
  • Лампы специального назначения.
Также флуоресцентные лампы делятся по другим признакам:
  • Мощность энергии потребления.
  • Световой поток.
  • Цветовая температура.
  • Индекс цветопередачи.
  • Длина лампы.
  • Размер цоколя.
  • Вид подключения.
  • Размещение пускателя. Размещается в корпусе лампы или в светильнике.

Основным элементом флуоресцентных ламп являются пары ртути в малой концентрации. При прохождении через них электрического тока образуется ультрафиолетовое излучение. Люминофор – это химическое вещество, находящееся на внутренней поверхности трубки лампы, преобразующее ультрафиолетовое излучение в видимый для глаз свет. Качество света зависит от состава люминофора.

Принцип действия

При включении питания в стартере образуется небольшой тлеющий разряд, под действием него нагреваются электроды.

Один из электродов изготовлен из биметаллического материала. При нагревании он изгибается и прикасается к другому электроду. В итоге в цепи резко увеличивается электрический ток, разряд в стартере прекращается. Повышающийся ток нагревает электроды флуоресцентной лампы. они начинают выпускать электроны. Это является подготовкой к запуску работы лампы.

Электроды в стартере в это время охлаждаются, биметаллический элемент выправляется, и между электродами появляется зазор. Сила тока в схеме значительно снижается. В дросселе появляется мгновенное повышенное напряжение, которое называется напряжением самоиндукции. Оно препятствует снижению этого тока. При суммировании с напряжением цепи, напряжение самоиндукции образует в лампе короткий импульс напряжения, которого хватает для образования электроразряда в газе.

Сначала разряд возникает в аргоне, а затем, когда газ разогреется, в ртутных парах. Во время свечения лампы напряжение на электродах, а значит и электродах стартера, подключенного к лампе по параллельной схеме, меньше напряжения цепи на размер ЭДС самоиндукции, появляющейся в дросселе при загорании лампы.

Поэтому, дроссель предназначен не только для запуска люминесцентной лампы, но и в создании препятствия неограниченного повышения тока разряда. Если бы дросселя не было, то при увеличении тока лампа разрушилась бы, либо вышли из строя предохранители сети питания квартиры.

Конденсатор С1 в схеме стартера предназначен для подавления помех радиочастотных волн. А емкость С2 служит для увеличения коэффициента мощности.

Особенности и преимущества флуоресцентных ламп

Ультрафиолетовое излучение заставляет светиться люминофор видимым для глаза человека светом. Стекло колбы лампы не дает выхода вредному ультрафиолетовому излучению. Этим оно защищает наши глаза.

Бактерицидные лампы имеют в своей конструкции кварцевое стекло, которое легко пропускает ультрафиолет. Такие лампы применяются для дезинфекции и кварцевания помещений в медицине. Большое распространение имеют сегодня лампы с амальгамами кадмия и другими элементами. В них давление ртути снижено, вследствие чего расширяется интервал температур отдачи света до 60 градусов. Для чистой ртути эта величина составляет 25 градусов.

При возрастании температуры воздуха больше 25 градусов, температура стенок лампы и давление паров ртути повышается, а поток света снижается. Еще сильнее уменьшается поток света при снижении температуры и давления паров. При этом запуск ламп затрудняется. Поэтому в холодное время применение флуоресцентных ламп ограничено.

Чтобы решить эту проблему, разработана конструкция безртутных люминесцентных ламп, в которых давление инертного газа низкое. В них слой люминофора начинает светиться от излучения с величиной длины волны 58-147 нанометров. Так как давление газа в таких лампах не зависит от температуры воздуха, то поток света не изменяется. Сегодня существуют лампы нового поколения Т5. Они более компактны, в них используется высокочастотный пускатель.

Чем больше длина лампы, тем сильнее поток света. Это происходит из-за уменьшения анодно-катодных потер в потоке света. Поэтому выгоднее применить одну лампочку на 36 ватт, чем 2 лампы по 18 ватт. Срок действия у таких ламп ограничивается распылением катодов. Также снижают срок службы колебания напряжения сети питания и частые переключения.

Достоинства

Флуоресцентные лампы нашли широкое применение в связи с тем, что они обладают значительными достоинствами, по сравнению с простыми лампочками накаливания.

  • Повышенная эффективность. Световая отдача выше в 10 раз, чем у лампнакаливания, КПД 25% по сравнению с лампами накаливания – 7%.
  • Большой срок работы – до 20000 часов.
Недостатки
  • Требуется подключение балласта для нормальной работы лампы.
  • Устойчивая работа лампы зависит от температуры воздуха.

Излучение света оказывает на людей значительное воздействие, как психологическое, так и физиологическое, но чаще благотворное. Самым полезным считается дневной свет. Он оказывает влияние на процессы жизни человека, обмен веществ, развитие в физическом плане и т.д. Искусственное освещение отличается от дневного света. Лампы накаливания излучают желтый и красный спектр света, ультрафиолет отсутствует, поэтому они считаются теплыми источниками света.

Еще одним достоинством люминесцентных ламп является возможность образования света разного спектра, от теплого до дневного. Это делает богаче цветовую палитру домашнего быта. Для разных областей применения рекомендуют свои цвета.

Читайте также:  Brother hl 2132r драйвер windows 7
Как изготавливают флуоресцентные лампы

Эта лампа была изобретена в 1909 году. До сих пор ее конструкция принципиально не изменилась. Их изготовление является сложным процессом. Нужна механическая хореография, которая включает в себя сварку, и плавку, а также изгибы, пайка, окраска.

Технологический процесс начинается с трубок из стекла. До этого их тщательно подвергают промывке в теплой воде для удаления примесей и грязи. Далее трубкам придается специфическая форма. Их подвергают нагреву в течение половины минуты, потом быстро сгибают по шаблону. Автоматический станок изгибает трубки со скоростью 14 штук в минуту.

Изогнутые трубки идут в камеру, в которой наносится небольшой слой фосфора на внутреннюю поверхность. Фосфор образует световой поток, преобразуя ультрафиолет, образующийся во время ионизации паров ртути. С краев трубки убирают излишки фосфора, для последующей пайки.

Теперь нужно установить компоненты электросхемы. Монтажным автоматом изготавливается катодное устройство. По ним будет поступать ток. Проводникам придается нужная форма, затем их нагревают до определенного значения температуры. Это является подготовкой к следующему этапу, потому что важно не дать катодному покрытию перейти на штырьки.

Нити лампы вставляют в опору. Эмиссионное вещество в этом процессе имеет большое значение. Она испускает электроны, участвующие в образовании светового потока. На следующем этапе соединяют подставку и стеклянную трубку. Пайка производится при высокой температуре.

Теперь остается самый важный процесс, во время которого выкачивают воздух из трубки и заполняют ее инертным газом. На этой же операции в трубку впрыскивается капля ртути, которая очень важна для образования света.

Следующий этап – это размещение проводов, чтобы установить крышку, закрывающую трубку. Крышка создает электрический контакт, и надевается на конец трубки. Она должна иметь абсолютную герметичность, чтобы не было утечки. Теперь лампа готова.

Каждый образец лампы ставят на испытательное колесо для проверки качества.

После тщательной проверки флуоресцентные лампы перевозят на упаковку. Эта операция требует необходимой точности и ловкости. С помощью фосфора, ртути и паяльных ламп изготавливается устройство, не изменившееся за последний век.

Люминесце́нтная ла́мпа — газоразрядный источник света, в котором электрический разряд в парах ртути создаёт ультрафиолетовое излучение, которое преобразуется в видимый свет с помощью люминофора — например, смеси галофосфата кальция с другими элементами.

Световая отдача люминесцентной лампы в несколько раз больше, чем у ламп накаливания аналогичной мощности. Срок службы люминесцентных ламп около 5 лет при условии ограничения числа включений до 2000, то есть не больше 5 включений в день в течение гарантийного срока 2 года. [ источник не указан 1804 дня ]

Содержание

Разновидности [ | ]

Наиболее распространены газоразрядные ртутные лампы высокого и низкого давления.

  • лампы высокого давления применяют в основном в уличном освещении и в осветительных установках большой мощности;
  • лампы низкого давления применяют для освещения жилых и производственных помещений.

Газоразрядная ртутная лампа низкого давления (ГРЛНД) представляет собой стеклянную трубку с нанесённым на внутреннюю поверхность слоем люминофора, заполненную аргоном под давлением 400 Па и ртутью (или амальгамой).

Плазменные дисплеи также являются разновидностью люминесцентной лампы.

Область применения [ | ]

Люминесцентные лампы нашли широкое применение в освещении общественных зданий: школ, больниц, офисов и т. д. С появлением компактных люминесцентных ламп с электронными балластами, которые можно включать в патроны E27 и E14 вместо ламп накаливания, люминесцентные лампы завоёвывают популярность и в быту.

Люминесцентные лампы наиболее целесообразно применять для общего освещения, прежде всего помещений большой площади (в особенности совместно с системами DALI), позволяющими улучшить условия освещения и при этом снизить потребление энергии на 50-83 % и увеличить срок службы ламп. Люминесцентные лампы широко применяются также и в местном освещении рабочих мест, в световой рекламе, подсветке фасадов.

До начала применения светодиодов являлись единственным источником для подсветки жидкокристаллических экранов.

Преимущества и недостатки [ | ]

Популярность люминесцентных ламп обусловлена их преимуществами (над лампами накаливания):

  • значительно большая светоотдача (люминесцентная лампа 20 Вт даёт освещённость как лампа накаливания на 100 Вт) и более высокий КПД;
  • разнообразие оттенков света;
  • рассеянный свет;
  • длительный срок службы ( 2000 [1] — 90 000 часов [2] в отличие от 1000 у ламп накаливания), при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу включений и выключений (поэтому их не рекомендуется применять в местах общего пользования с автоматическими включателями с датчиками движения).

К недостаткам относят:

  • химическая опасность (ЛЛ содержат ртуть в количестве от 2,3 мг до 1 г);
  • неравномерный, линейчатый спектр, неприятный для глаз и вызывающий искажения цвета освещённых предметов (существуют лампы с люминофором спектра, близкого к сплошному, но имеющие меньшую светоотдачу);
  • деградация люминофора со временем приводит к изменению спектра, уменьшению светоотдачи и как следствие понижению КПД ЛЛ;
  • мерцание лампы с удвоенной частотой питающей сети (применение ЭПРА решает проблему, при условии достаточной ёмкости сглаживающего конденсатора выпрямленного тока на входе инвертора ЭПРА (производители часто экономят на ёмкости конденсатора);
  • наличие дополнительного приспособления для пуска лампы — пускорегулирующего аппарата (громоздкий шумный дроссель с ненадёжным стартером или же дорогой ЭПРА);
  • очень низкий коэффициент мощности ламп — такие лампы являются неудачной для электросетинагрузкой (нивелируется применением очень дорогих ЭПРА с корректором коэффициента мощности);

Существуют и более мелкие недостатки [3] .

История [ | ]

Первым предком лампы дневного света были газоразрядные лампы. Впервые свечение газов под воздействием электрического тока наблюдал Михаил Ломоносов, пропуская ток через заполненный водородом стеклянный шар. Считается, что первая газоразрядная лампа изобретена в 1856 году. Генрих Гейслер получил синее свечение от заполненной газом трубки, которая была возбуждена при помощи соленоида. 23 июня 1891 года Никола Тесла запатентовал систему электрического освещения газоразрядными лампами (патент № 454,622), которая состояла из источника высокого напряжения высокой частоты и газоразрядных аргоновых ламп, запатентованных им ранее (патент № 335,787 от 9 февраля 1886 г. выдан United States Patent Office). Аргоновые лампы используются и в настоящее время. В 1893 году на всемирной выставке в Чикаго, штат Иллинойс, Томас Эдисон показал люминесцентное свечение. В 1894 году М. Ф. Моор создал лампу, в которой использовал азот и углекислый газ, испускающий розово-белый свет. Эта лампа имела умеренный успех. В 1901 году Питер Купер Хьюитт демонстрировал ртутную лампу, которая испускала свет сине-зелёного цвета, и таким образом была непригодна в практических целях. Однако, её конструкция была очень близка к современной, и имела намного более высокую эффективность, чем лампы Гейслера и Эдисона. В 1926 году Эдмунд Гермер (Edmund Germer) и его сотрудники предложили увеличить операционное давление в пределах колбы и покрывать колбы флуоресцентным порошком, который преобразовывает ультрафиолетовый свет, испускаемый возбуждённой плазмой, в более однородный бело-цветной свет. Э. Гермер в настоящее время признан как изобретатель лампы дневного света. General Electric позже купила патент Гермера, и под руководством Джорджа Э. Инмана довела лампы дневного света до широкого коммерческого использования к 1938 году. В 1951 году за разработку в СССР люминесцентных ламп В. А. Фабрикант был удостоен звания лауреата Сталинской премии второй степени совместно с С. И. Вавиловым, В. Л. Лёвшиным, Ф. А. Бутаевой, М. А. Константиновой-Шлезингер, В. И. Долгополовым.

Принцип работы [ | ]

При работе люминесцентной лампы между двумя электродами, находящимися в противоположных концах лампы, горит дуговой разряд [4] [5] . Лампа заполнена инертным газом и парами ртути, проходящий электрический ток приводит к появлению УФ-излучения. Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции. Внутренние стенки лампы покрыты специальным веществом — люминофором, которое поглощает УФ-излучение и излучает видимый свет. Изменяя состав люминофора, можно менять оттенок свечения лампы. В качестве люминофора используют в основном галофосфаты кальция и ортофосфаты кальция-цинка.

Читайте также:  Fw worksheet sfi sf 2000

Дуговой разряд поддерживается за счёт термоэлектронной эмиссии заряженных частиц (электронов) с поверхности катода. Для запуска лампы катоды разогреваются либо пропусканием через них тока (лампы типа ДРЛ, ЛД), либо ионной бомбардировкой в тлеющем разряде высокого напряжения («лампы с холодным катодом»). Ток разряда ограничивается балластом.

Маркировка [ | ]

Цветовосприятие света человеком сильно изменяется в зависимости от освещённости. При небольшой освещённости мы лучше видим синий и хуже красный. Поэтому дневной свет с цветовой температурой 5000 — 6500 K в условиях низкой освещённости будет казаться чрезмерно синим. Средняя освещённость жилых помещений — 75 люкс, в то время как в офисах и других рабочих помещениях — 400 люкс. При небольшой освещённости (50—75 люкс) наиболее естественным выглядит свет с цветовой температурой 3000 K . При освещённости в 400 люкс такой свет уже кажется жёлтым, а наиболее естественным кажется свет с температурой 4000 — 6000 K .

Промышленность выпускает лампы для различных применений. Определить, подходит ли лампа для конкретной задачи, помогает маркировка.

Международная маркировка по цветопередаче и цветовой температуре [ | ]

Трёхцифровой на упаковке лампы содержит, как правило, информацию относительно качества света (индекс цветопередачи и цветовой температуры).

Первая цифра — индекс цветопередачи в 1х10 Ra (компактные люминесцентные лампы имеют 60-98 Ra, таким образом, чем выше индекс, тем достоверней цветопередача).

Вторая и третья цифры указывают на цветовую температуру лампы.

Таким образом, маркировка «827» указывает на индекс цветопередачи в 80 Ra и цветовую температуру в 2700 К (что соответствует цветовой температуре лампы накаливания).

Кроме того, индекс цветопередачи может обозначаться в соответствии с DIN 5035, где диапазон цветопередачи 20-100 Ra поделён на 6 частей — от 4 до 1А [6] .

Определение Особенности Применение
530 Basic warmweiß / warm white Свет тёплых тонов с плохой цветопередачей. Объекты кажутся коричневатыми и малоконтрастными. Посредственная светоотдача. Гаражи, кухни. В последнее время встречается всё реже.
640/740 Basic neutralweiß / cool white «Прохладный» свет с посредственной цветопередачей и светоотдачей. Весьма распространён, должен быть заменён на 840.
765 Basic Tageslicht / daylight Голубоватый «дневной» свет с посредственной цветопередачей и светоотдачей. Встречается в офисных помещениях и для подсветки рекламных конструкций (ситилайтов).
827 Lumilux interna Похожий на свет лампы накаливания с хорошей цветопередачей и светоотдачей. Жильё.
830 Lumilux warmweiß / warm white Похожий на свет галогеновой лампы с хорошей цветопередачей и светоотдачей. Жильё.
840 Lumilux neutralweiß / cool white Белый свет для рабочих поверхностей с очень хорошей цветопередачей и светоотдачей. Общественные места, офисы, ванные комнаты, кухни. Внешнее освещение.
865 Lumilux Tageslicht / daylight «Дневной» свет с хорошей цветопередачей и посредственной светоотдачей. Общественные места, офисы. Внешнее освещение.
880 Lumilux skywhite «Дневной» свет с хорошей цветопередачей. Внешнее освещение.
930 Lumilux Deluxe warmweiß / warm white «Тёплый» свет с отличной цветопередачей и плохой светоотдачей. Жильё.
940 Lumilux Deluxe neutralweiß / cool white «Холодный» свет с отличной цветопередачей и посредственной светоотдачей. Музеи, выставочные залы.
954, 965 Lumilux Deluxe Tageslicht / daylight «Дневной» свет с непрерывным спектром цветопередачи и посредственной светоотдачей. Выставочные залы, освещение аквариумов.

Маркировка цветопередачи в России [ | ]

Маркировка люминесцентных ламп в России отличается от международной и определяется ГОСТами и другими нормативными документами.

В соответствии с действующим ГОСТ 6825-91* (МЭК 81-84) [7] «Лампы люминесцентные трубчатые для общего освещения», лампы люминесцентные линейные общего назначения маркируются, как:

  • ЛБ (белый свет)
  • ЛД (дневной свет)
  • ЛХБ (холодно-белый свет)
  • ЛТБ (тёпло-белый свет)

Отечественные производители также применяют другие маркировки [8] :

  • ЛЕ (естественный свет)
  • ЛХЕ (холодный естественный свет)

Добавление буквы Ц в конце означает применение люминофора «де-люкс» с улучшенной цветопередачей, а ЦЦ — люминофора «супер де-люкс» с высококачественной цветопередачей.

Лампы специального назначения маркируются, как:

  • ЛГ, ЛК, ЛЗ, ЛЖ, ЛР, ЛГР (лампы цветного свечения)
  • ЛУФ (лампы ультрафиолетового света)
  • ДБ (лампа ультрафиолетового света типа С)
  • ЛСР (синего света рефлекторные) [9]

Параметры отечественных ламп по цветопередаче и светоотдаче приведены в таблице:

Аббревиатура Расшифровка Оттенок Цветовая т-ра, К Ориентировочная средняя светоотдача, лм/Вт, для ламп мощностью 20 / 30 / 40 Вт Назначение Цветопередача Примерный эквивалент по международной маркировке
Лампы дневного света
ЛДЦ, ЛДЦЦ Лампы дневного света, с улучшенной цветопередачей; ЛДЦ — де-люкс, ЛДЦЦ — супер-де-люкс Белый с лёгким голубоватым оттенком и относительно низкой светоотдачей 6500 42 / 50 / 55 Для музеев, выставок, в фотографии, в производственных и административных помещениях с повышенными требованиями к цветопередаче. Хорошая (ЛДЦ), отличная (ЛДЦЦ) 865 (ЛДЦ),
965 (ЛДЦЦ)
ЛД Лампы дневного света Белый с лёгким голубоватым оттенком и высокой светоотдачей 6500 50 / 57 / 65 В производственных и административных помещениях без высоких требований к цветопередаче Приемлемая 765
Лампы естественного света
ЛЕЦ, ЛЕЦЦ Лампы естественного света, с улучшенной цветопередачей; ЛЕЦ — де-люкс, ЛЕЦЦ — супер-де-люкс Солнечно-белый с относительно низкой светоотдачей 4000 _ / _ / 56 Для музеев, выставок, в фотографии, в образовательных учреждениях, жилых помещениях Хорошая (ЛЕЦ), отличная (ЛЕЦЦ) 840 (ЛЕЦ),
940 (ЛЕЦЦ)
ЛЕ Лампы естественного света Белый без оттенка и высокой светоотдачей 4000 _ / _ / _ Приемлемая 740
Другие осветительные лампы
ЛБ Лампы белого света Белый с лиловатым оттенком, плохой цветопередачей и высокой светоотдачей 3500 60 / 73 / 80 В помещениях, где нужен яркий свет и не требуется цветопередача: производственных и административных помещениях, в метрополитене Неудовлетворительная 635
ЛХБ Лампы холодно-белого света Белый с солнечным оттенком и плохой цветопередачей 4000 51 / 64 / 77 В производственных и административных помещениях без высоких требований к цветопередаче Неудовлетворительная 640
ЛТБ Лампы тёпло-белого света Белый с «тёплым» розовым оттенком, для освещения помещений, богатых бело-розовыми тонами 3000 55 / 66 / 78 В продовольственных магазинах, предприятиях общественного питания Относительно приемлемая для тёплых тонов, неудовлетворительная для холодных 530, 630
ЛТБЦЦ Лампы тёпло-белого света с улучшенной цветопередачей Белый с «тёплым» жёлтым оттенком 2700 , 3000 35 / _ / 50 Такое же, как и для ЛТБ, а также для жилых помещений. Приемлемая для тёплых тонов, менее удовлетворительная для холодных 927, 930
Лампы специального назначения
ЛГ, ЛК, ЛЗ, ЛЖ, ЛР, ЛГР Лампы с цветным люминофором ЛГ — голубой,
ЛК — красный,
ЛЗ — зелёный,
ЛЖ — жёлтый,
ЛР — розовый,
ЛГР — лиловый
Для светового дизайна, художественной подсветки зданий, вывесок, витрин ЛГ: 67, 18, BLUE
ЛК: 60, 15, RED
ЛЗ: 66, 17, GREEN
ЛЖ: 62, 16, YELLOW [10]
ЛСР Лампы синие рефлекторные Лампы ярко-синего света В электрофотографических копировально-множительных аппаратах
ЛУФ Ультрафиолетовые лампы Лампы тёмно-синего света с выраженной ультрафиолетовой компонентой Для ночной подсветки и дезинфекции в медицинских учреждениях, казармах и т. д., а также в качестве «чёрного света» для светового дизайна в ночных клубах, на дискотеках и т. п. 08

Особенности подключения к электрической сети [ | ]

Любая газоразрядная лампа (в том числе Газоразрядная люминесцентная лампа низкого давления), в отличие от лампы накаливания, не может быть включена напрямую в электрическую сеть. Причин для этого две:

  • В «холодном» состоянии люминесцентная лампа обладает высоким сопротивлением и для зажигания в ней разряда требуется импульс высокого напряжения;
  • Люминесцентная лампа после возникновения в ней разряда имеет отрицательное дифференциальное сопротивление, поэтому, если в цепь не будет включено сопротивление, возникнет короткое замыкание и лампа выйдет из строя.

Для решения этих проблем применяют специальные устройства — балласты (ПускоРегулирующие Аппараты). Наиболее распространённые на сегодняшний день схемы подключения: с электромагнитным балластом (ЭмПРА) и неоновым стартером, и с электронным балластом (ЭПРА; существует много различных моделей и вариантов).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector